

MOBILE AGENT MANAGEMENT

By

Patricia Cuesta Rivalta

A Thesis Submitted to

the Faculty of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of

Master of Engineering

Faculty of Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada

October 2000

© Copyright Patricia Cuesta Rivalta, 2000

 ii

The undersigned hereby recommended to

Faculty of Graduate Studies and Research

acceptance of this thesis

MOBILE AGENT MANAGEMENT

Submitted by Patricia Cuesta Rivalta, B.Sc.

in partial fulfillment of the requirements

for the degree of Master of Engineering

Department Chair

Thesis Supervisor, Professor Bernard Pagurek

Carleton University

October, 2000

 iii

ABSTRACT

The development of network management systems based on decentralized

paradigms have been proposed to address the problems that arise because of the

rapid growth, the active and dynamic nature, heterogeneous environment, and

geographical and administrative distribution today's telecommunication networks

face.

Mobile agents are considered an essential technology in the development of

distributed software applications because of their capabilities to move across

distributed environments, integrate with local resources and other mobile agents,

and communicate their results back to the user or authority on behalf they are

acting. Particularly in network management systems, the decentralization of

management functionality benefits from their integration with the mobile agent

technology.

This thesis extends the Mobile Code Toolkit of the Perpetuum Mobile Procura

project for integration with an SNMP agent. Mobile agents are provided with

management capabilities to dynamically access and extend the XMS-SNMP agent’s

MIB. Based on this architecture, it designs and implements a mobile agent MIB

allowing manager application to monitor and control the mobile agents visiting the

network.

 iv

ACKNOWLEDGEMENTS

I would like to thanks to my thesis supervisor Professor Bernard Pagurek for his

invaluable guidance, support and encouragement during these two years, thanks

for give me the opportunity to share ideas and experiences with the colleagues at

the Network Management Laboratory and for his decisive recommendation that

led me to join the Canadian telecommunication industry.

Special thanks to my wonderful friends who have always been there when I

needed.

Most importantly, thanks to my family- papi, mami, and Lalita - for their

encouragement and support for many years to get here and continue. I owe them

so much.

Thanks.

 v

TABLE OF CONTENT

ABSTRACT..iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

LIST OF ACRONYMS... xii

Chapter 1 Introduction .. 1

1.1 Problem Overview ..1

1.2 Thesis Contributions ...5

1.3 Thesis Outline...6

Chapter 2 Distributed Network Management .. 10

2.1 Introduction ..10

2.2 Distributed Management in the Internet Community ...13

2.2.1 The DISMAN Scheduling MIB..14

2.2.2 The DISMAN Script..17

2.3 Extensible Agents ...21

2.3.1 Extensibility implementations..25

2.3.2 The XMS-SNMP agent..26

2.3.2.1 The XMS-SNMP Agent Functional Architecture...26

2.3.2.2 The XMS-SNMP Agent Data Model...29

 vi

2.3.2.3 The XMS-SNMP Agent Message Scheduling..31

2.3.2.4 The XMS-SNMP Management MIB ...33

2.4 Summary ..35

Chapter 3 Mobile Agent Environment for Network Management 37

3.1 Introduction ..37

3.2 Initiatives for Agent System Interoperability ...41

3.2.1 MASIF and FIPA similarities...42

3.2.2 MASIF and FIPA differences...45

3.2.3 MASIF and FIPA implementations ..50

3.3 The Perpetuum Mobile Procura Project’s Mobile Code Toolkit56

3.3.1 Mobile Agent Management..57

3.3.2 Mobile Agent Location Services ..59

3.3.2.1 The Local Mobile Agent Location Directory ...60

3.3.2.2 The Regional Mobile Agent Location Directory ..60

3.3.3 The Migration History ...61

3.4 Summary ..64

Chapter 4 Integrating Mobile Agents with SNMP.. 65

4.1 Introduction ..65

4.2 Integrating the Mobile Code Toolkit with the XMS- SNMP agent66

4.2.1 Mobile Agents extending the SNMP agent’s MIB ..69

4.2.2 Mobile Agents accessing the SNMP agent’s MIB...71

4.3 The MCT – XMS-SNMP agent integrating environment ...73

4.4 Summary ..76

Chapter 5 Mobile Agent MIB.. 77

5.1 Introduction ..77

 vii

5.2 The Mobile Agent Management MIB..78

5.2.1 The MCMIB group..79

5.2.2 The MHMIB group..82

5.3 The Mobile Agent MIB Implementation..87

5.3.1 The MCMIBExtender..87

5.3.1.1 Local Mode Management..89

5.3.1.2 Regional Mode Management...90

5.3.2 The MCMIBGroup and the MHMIBGroup ..92

5.4 Summary ..95

Chapter 6 Test Design.. 96

6.1 Introduction ..96

6.2 RDPI and SNMP Protocol Comparison Test ...97

6.2.1 Test Strategy ...98

6.2.1.1 Test Configuration..98

6.2.1.2 The RDPI Manager tools...99

6.2.1.3 The SNMP Manager tool. ...99

6.2.2 Test Scenario...99

6.2.3 Test cases ..100

6.3 Mobile Agent MIB Test ..101

6.3.1 Test Strategy ...101

6.3.1.1 Test Configuration..101

6.3.2 Test Scenarios ...102

6.3.3 Test Cases ...102

6.3.3.1 Local Mode Management Test Case..102

6.3.3.2 Regional Mode Management Test Case...103

6.4 Summary ..104

 viii

Chapter 7 Conclusions ... 105

7.1 Thesis Summary ...105

7.2 Future Work ...106

References.. 108

Appendix A.. 116

Appendix B.. 118

Appendix C.. 131

Appendix D.. 134

Appendix E.. 145

 ix

LIST OF FIGURES

Figure 2.1 The DISMAN Scheduling MIB .. 16

Figure 2.2 The DISMAN Script MIB .. 18

Figure 2.3 JMX Architecture... 23

Figure 2.4 The XMS-SNMP Agent Functional Architecture.. 28

Figure 2.5 The XMS-SNMP Data Model .. 30

Figure 2.6 The XMS-SNMP Agent Management MIB .. 34

Figure 3.1 The MASIF Architecture.. 43

Figure 3.2 The FIPA Reference Model .. 44

Figure 3.3 Finding a Destination Agent ... 46

Figure 3.4 FIPA ACL Message ... 47

Figure 3.5 Location Transparency in a Grasshopper DAE ... 52

Figure 3.6 Aglet Communication Layer Architecture .. 54

Figure 3.7 The FIPA-OS Agent Shell .. 55

Figure 3.8 Mobile Code Environment Infrastructure.. 58

Figure 4.1 Dual VMC Architecture ... 70

Figure 4.2 MIBExtender/MIBExtenderHandler Framework .. 72

Figure 4.3 MIBAccessFacilitator Request Processing.. 73

Figure 4.4 The MCT – XMS-SNMP agent Integrated Framework 75

Figure 5.1 Position of the Mobile Agent MIB in the OSI Registration Tree 79

Figure 5.2 Mobile Code MIB Group ... 83

Figure 5.3 Migration History MIB Group.. 84

Figure 5.4 Instance Views of mcTable and mcMigrationHistoryTable........................... 86

 x

Figure 5.5 MCMIBExtender Framework... 88

Figure 5.6 Mobile Agent Management in Local Mode... 90

Figure 5.7 Mobile Agent Management in Regional Mode .. 92

Figure 6.1 Test Configuration.. 98

Figure 6.2 Network Management System Configuration ... 103

Figure A.1 Mobile Code Status Transition Graph .. 116

Figure D.1 snmptest Application Interaction with the XMS-SNMP agent.................... 144

Figure E.1 snmptest Application Interrogating the XMS-SNMP agent's MIB 155

 xi

LIST OF TABLES

Table 3.1 Grasshopper Platform Management 53

Table 6.1 Test Cases 100

Table 6.2 Average Reponse Times (msecs) 100

Table D.1 Object Identifiers for MCMIBTREE Group 140

Table D.2 Instance Identifiers for the MCMIBTREE Table Entries 141

 xii

LIST OF ACRONYMS

ACC Agent Communication Channel

ACL Agent Communication Language

AMS Agent Management System

AP Agent Platform

API Application Programming Interface

ASN.1 Abstract Syntax Notation

ATP Aglet Transport Protocol

BER Basic Encoding Rules

CF Communication Facilitator

CIM Common Information Model

CMU-SNMP Carnegie Mellon University SNMP agent

CORBA Common Object Request Broker Architecture

CORBA-IIOP CORBA Internet I O Protocol

CS Communication Service

DAE Distributed Agent Environment

DF Directory Facilitator

DISMAN DIStributed MANagement

DPI Distributed Protocol Interface

EMANATE Enhanced MANagement Agent Through Extensions

FIPA Foundation for Intelligent Physical Agents

IA Intelligent Agent

 xiii

IDL Interface Definition Language

IETF Internet Engineering Task Force

IKV++ Innovation+Know-How+Vision

ITU-T International Telecommunication Union-

Telecommunication Standard Sector

JASMIN Java Script MIB ImplementatioN

JIDM Joint Inter Domain Management

JDK Java Develoment Kit

JMX Java Mangement eXtensions

KQML Knowledge Query and Manipulation Language

M2M-MIB Manager-to-Manager MIB

MA Mobile Agent

MAF MIB Access Facilitator

MASIF Mobile Agent System Interoperability Facility

MbD Management by Delegation

MBean Management Bean

MCD Mobile Code Daemon

MCE Mobile Code Environment

MCM Mobile Code Manager

MCMIB Mobile Code MIB

MCMIBTree Mobile Code MIB Tree

MCT Mobile Code Toolkit

MF Migration Facilitator

 xiv

MEF MIB Extender Facilitator

MHMIB Migration History MIB

MIB Management Information Base

MLM-MIB Mid-Level-Manager MIB

NE Network Element

NMS Network Management System (Station)

OMG Object Management Group

OSI-SM Open System Interconnection System Management

PMP Perpetuum Mobile Procura project

RDF Resource Description Framework

RDP Remote Delegation Protocol

RDPI Reverse DPI

RMI Remote Method Invocation

RPC Remote Procedure Call

SNMP Simple Network Management Protocol

SSL Secure Socket Layer

TNM Telecommunication Network Management

UCD-SNMP agent University of California at Davis SNMP agent

VMC Virtual Managed Component

WAN Wide Area Network

LAN Local Area Network

XMS-SNMP agent eXtensible Mobile Supported SNMP agent

 1

Chapter 1 Introduction

1.1 Problem Overview

The development of network management systems based on decentralized

paradigms have been proposed to address the problems that arise because of the

rapid growth, the active and dynamic nature, heterogeneous environment, and

geographical and administrative distribution today's telecommunication networks

face. The Management by Delegation (MbD) model [62] has provided a

management architecture based on a distribution paradigm in such a way that

management functions can be dynamically distributed among management entities

in a network management system. At runtime, managers delegate management

tasks to MbD agents. The IETF DIStributed MANagement (DISMAN) Working

Group [17] has proposed a distributed model for the Internet community based on

the SNMP protocol where the management functionality is distributed among

multiple network managers: the Schedule and the Script MIBs provide mechanisms

for performing management operations distributed temporally and spatially.

Dynamic extensibility is one of the solutions that has been used to support the MbD

model [13] in network management environments: extensible agents are MbD

agents that model a distributed MIB in a master/subagents architecture where the

MIB consists of a static MIB residing in the master agent and several distributed

subagents that dynamically register portions of the MIB.

2

More recently, Sun Microsystems Inc. has also led the development of a set of

standard specifications to equip the Java technology with a universal extension for

distributed management, known as the Java Management eXtension (JMX) [52].

On the other hand, mobile agents are considered an essential technology in the

development of distributed software applications because of their capabilities to

move across distributed environments, integrate with local resources and other

mobile agents, and communicate their results back to the user or authority on behalf

they are acting. Particularly in network management systems, the decentralization

of management functionality benefits from their integration with the mobile agent

technology.

The Object Management Group (OMG) [35] and the Foundation for Intelligent

Physical Agents (FIPA) [11] are the two major standardization bodies related to

agent technology that are addressing interoperability of agents from different

manufacturers in order to fulfill the requirements of today’s dynamic,

heterogeneous and distributed service provisioning applications.

This thesis is part of the research work of the Perpetuum Mobile Procura project

[40, 6] devoted to advanced network management models using mobile agent

technology. First, the network management model is based on the SNMP protocol,

the Internet framework for managing heterogeneous networks. Second, the

provision of extensibility capabilities to legacy SNMP agents using the Distributed

3

Protocol Interface and the Reverse Distributed Protocol Interface protocols, and

third, the use of mobile agents to dynamically augment the local SNMP agent

functionality. Mobile agents do not replace the SNMP protocol used by classic

network management applications to interface with the SNMP agent services in the

network elements; instead, they complement the management application – SNMP

agent interaction model providing more efficient solutions for managing today’s

heterogeneous, dynamic, and complex networks.

Exploiting their migration capabilities, mobile agents arrive to the same network

element of and interact with the SNMP agent taking advantages of the local

communication and the management capabilities the resident SNMP agent already

has. Two main types of mobile agent – SNMP agent interaction are identified:

1. Interaction derived from arriving mobile agents carrying with management

information and wanting to extend the local SNMP MIB. A special purpose

protocol need to be used to handle the two-way communication: the

registration/deregistration processes of MIB variables by mobile agents with the

resident SNMP agent, and the request/response of MIB variables forwarded by

the SNMP agent to the mobile agent actually hosting the MIB sub-tree.

Obviously, the SNMP agent must be modified to support the dynamic MIB

multi-registration and to schedule queries for the distributed MIB variables; and

mobile agents would employ an API of a local service to accomplish the

registration and be able to accept/reply to queries to the hosted MIB variables.

4

2. Interaction derived from arriving mobile agents requesting data from the SNMP

MIB can be governed by the provision of either the SNMP protocol or a

lightweight and more efficient version of the SNMP protocol with the complete

managerial capabilities of the SNMP. Employing the SNMP protocol, the

SNMP agent does not have to be modified but mobile agents have to have full

SNMP managerial capabilities and have to handle tasks as BER encoding

between two co-resident processes. The other alternative proposes a lightweight

protocol that provides mobile agents with access to the SNMP MIB variables

without having to undertake the BER encoding and decoding as SNMP has to.

The thesis focuses in the integration of a mobile agent infrastructure with an

extensible SNMP-based network management system. The XMS-SNMP master

agent uses the lightweight SNMP Distributed Protocol Interface (DPI) as the

protocol supporting communication between the master agent and subagents that,

taking advantage of the master agent and subagents locality, do not deal with

ASN.1 details and BER encoding rules as the SNMP protocol does. The

lightweight SNMP Reversed DPI (RDPI) protocol is used to accept management

requests from local manager applications wishing to access MIB variables.

The thesis implements an architecture [57, 37] to extend the Mobile Code Toolkit

framework for integration with the extensible XMS-SNMP agent. The solution

provides mobile agents carrying with management information can extend the

5

SNMP agent’s MIB using the DPI protocol [57, 37], and mobile agents with

access capabilities to retrieve information from the SNMP agent’s MIB using the

RDPI protocol.

Based on this architecture, the convenience of using RDPI instead of the SNMP

protocol in a local mobile manager application - SNMP agent interaction needs to

be measured .

This thesis also addresses the problem of managing mobile agents. For the above

management infrastructure to be feasible and complete in providing the needed

services to network managers, mobile agent management supports should be

provided. It designs and implements a mobile agent MIB for manager applications

to monitor and control the mobile agents visiting a Mobile Code Toolkit - XMS-

SNMP agent platform.

1.2 Thesis Contributions

This thesis has two major contributions. The first contribution is the

implementation of the dual component architecture to extend the Mobile Code

Toolkit providing mobile agents with SNMP management services to dynamically

access and extend the XMS-SNMP agent’s MIB. One component provides MIB

access capabilities to mobile agents wishing to retrieve MIB information from the

extensible SNMP agent. It offers a standard interface for mobile agents to submit

6

requests to the XMS-SNMP agent. The second component encapsulates the MIB

extension capabilities for mobile agents wishing to act as subagents extending the

SNMP agent’s MIB. It offers mobile agents the functions of register and

unregister the management information they provide with the XMS-SNMP agent,

applies management control, and forwards the requests from the XMS-SNMP

agent to these MIB extenders.

The second contribution is the design and implementation of a Management

Information Base (MIB) for managing mobile agents running in a Mobile Code

Toolkit - XMS-SNMP agent integrated environment. The management MIB has

been defined to monitor and control the number and the attributes of mobile

agents visiting the mobile agent system. The mobile agent MIB provides

information of the mobile agent identity, class, type, current location, execution

status, migration and communication capabilities and their migration history. It

also provides management functions to start, suspend, resume, stop and destroy

mobile agents. The MIB is actually implemented in a stationary agent that

interfaces mobile agents visiting the mobile agent system and registers the MIB

variables with the local XMS-SNMP agent.

1.3 Thesis Outline

In the remainder of the thesis, Chapter 2 examines some of the standardization

activities being done in the development of network management systems based on

7

decentralized paradigms and presents the functional architecture of the XMS-SNMP

agent, the dynamically extensible SNMP agent being used in the integrated

environment devoted to network management in the Perpetuum Mobile Procura

project. It describes the use of the SNMP Distributed Protocol Interface [57]

protocol to allow resident mobile agents, acting in the role of subagents, to

dynamically extend the existing SNMP MIB. The Reverse DPI (RDPI) [57, 37]

protocol is also used to allow resident mobile agents to access the SNMP MIB

saving in both message overhead and message processing compared with the

SNMP protocol.

Chapter 3 makes a comparative review of the standardization initiatives for agent

systems interoperability, some of their implementations and presents the Mobile

Code Toolkit as the mobile agent infrastructure of the Perpetuum Mobile Procura

project. Brief description of its functionality, how mobile agents are managed, the

location services and the mobile agent migration history in the Mobile Code Toolkit

framework are also provided.

Chapter 4 discusses how this thesis provides the Mobile Code Toolkit with

specialized SNMP management services and presents the dual Virtual Managed

Component architecture by the virtue of which mobile agents can integrate with a

resident XMS-SNMP agent. The MIBExtendFacilitator component is the Virtual

Managed Component implementation that provides a standard interface to the

mobile agents wishing to extend the XMS-SNMP agent’s MIB. It actually

8

encapsulates the use of the DPI protocol as the means to communicate with the

local XMS-SNMP agent. The second, the MIBAccessFacilitator component is the

Virtual Managed Component that, using the RDPI protocol, provides MIB access

capabilities to mobile agents wishing to retrieve information from the extensible

SNMP agent’s MIB.

Chapter 5 presents the structure and content of the mobile agent MIB and describes

its implementation. This project proposes a mobile agent MIB based on the mobile

agent management functionality, location services and migration history provided

by the Mobile Code Toolkit as described in Chapter 3. The MIB is implemented in

a stationary subagent, known as the MCMIBExtender, that interfaces the mobile

agents visiting the network element’s mobile agent system and registers the mobile

agent MIB variables with the resident XMS-SNMP agent's MIB via the

MIBExtenderFacilitator.

Chapter 6 focuses on the development of test strategies and cases to demonstrate

the efficiency and robustness of the solutions presented in the thesis. It concerns

measuring and comparing the response times of RDPI and SNMP management

operations. The main result being that RDPI is about three times faster than

SNMP's, demonstrated the benefits of using RDPI in a local communication

scenario. The mobile agent MIB implementation is also tested and demonstrates

how network management applications can manage mobile agents in a Mobile

Code Toolkit - XMS-SNMP agent integrated environment.

9

Chapter 7 summarizes the research work and it proposes two directions for future

work in the area of agent management.

Appendix A shows a concise agent’s execution status transition graph. Appendix B

provides the formal managed object definitions for the mobile agent MIB.

Appendix C shows an example of the interaction between XMS-SNMP agent and

Mobile Code Toolkit components during an SNMP management request process in

a regional mode management scenario. Appendixes D and E shows two test cases

of the mobile agent MIB, in local and regional mode management scenarios

respectively.

 10

Chapter 2 Distributed Network Management

2.1 Introduction

This chapter examines some of the activities being done in the development of

network management systems based on decentralized paradigms: more exactly, the

integration of centralized and decentralized paradigms as a solution to the rapid

growth, heterogeneous environment, and geographical and administrative

distribution today's telecommunication networks face.

Although initially emerged based on a centralized paradigm, the SNMP itself has

been continuously evolving into a more effective and distributed (decentralized)

network management framework. Let briefly summarize this on-going evolution.

One of the first decentralized approaches appeared as early as the SNMPv1; it is the

remote network monitoring (RMON) [56, 50]. The basis of RMON is remote

management devices, called monitors or probes, which once configured in remote

LAN segments, monitor, compile, and provide summarized statistical information

to the network managers.

Another approach seeking to address scalability within the SNMP protocol suite is

distributing the network management functions among multiple network managers.

 11

The SNMPv2 MIB module, known as the Manager-to-Manager (M2M) MIB,

supported manager-to-manager communications. In other words,

this MIB provides the means for one management station to
request management services from another management station
[7].

In general terms, the SNMPv2 protocol operation was extended with the

InformRequest/Reponse PDUs sequence to notify a manager of management

information associated with another manager. Although historic, the M2M

functionality remains in SNMPv3 and in the IETF DISMAN Working Group

activities. The SNMPv3 framework is viewed as a co-operating set of distributed

SNMP entities, composed of several interacting modules, which may implement

SNMP capabilities for acting either as a traditional SNMP manager, a SNMP agent,

proxy, or a combination of both. A network management system based on

SNMPv3 can also distribute the management functionality amongst distributed

SNMP entities all over the management system. However, because the SNMP is

unable to poll a huge amount of management information across low-bandwidth or

non-permanent links, this framework does not scale well in very large and

distributed networks.

On the other hand, the Management by Delegation (MbD) model provides a

management architecture based on a distribution paradigm in such a way that

management functions can be dynamically distributed among management entities

in a network management system. At runtime, managers delegate management

procedures to MbD agents. That is, they move the code closer to the managed

12

objects taking advantage of the agent computational power and of the local access

to the managed data. This implies not only that the MbD model is an application of

mobile code technology [41] and that the execution of this code in the agent side is

independent or requires minimal intervention of the manager, but also that the MbD

model provides management capabilities to these delegated procedures.

For instance, a version of the MbD model based on the SNMP framework was

implemented at SNMP Research Inc. [43, 22]. This prototype uses the SNMP

protocol as the delegation protocol for managers to delegate management

procedures, called scripts, into remote SNMP agents. Scripts are written in a

special purpose programming language, known as SNMP Script Language (SSL).

The Mid-Level-Manager MIB (MLM-MIB) was defined for managers for pushing

scripts into, for launching and controlling the scripts' execution and for pulling the

results from the remote SNMP agent. SNMP Research Inc.'s prototype inspired part

of the work the IETF DISMAN Working Group was charged with.

Another MbD prototype, designed at Columbia University, is based on elastic

processing [41, 30]. In a network management system scenario based on elastic

processing, a delegator process (manager application) transfers delegated

procedures to an elastic server (MbD agent) via a Remote Delegation Protocol

(RDP). An elastic server is an elastic process that exports its dynamically changing

interface; that means, upon request, the elastic server supports the extension and

contraction of its code and its execution state. The RDP is used by the delegator

13

process to interact remotely with the elastic server. The RDP allows a delegator

process to request the incorporation or deletion of a delegated procedure into the

elastic server, changing its interface. Delegators can remotely invoke delegated

procedures on separate threads in the address space of the elastic process and

control its execution as well. MbD agents can be organized as elastic servers and

therefore their management functionality can be dynamically extended.

Section 2.2 analyses the IETF DIStributed MANagement (DISMAN) Working

Group [17] activities being developed to support the MbD model and produce a

standard distributed management framework based on the SNMP protocol. Section

2.3 presents other approaches based on the extensibility of management entities

participating in a network management system and finally, the functional

architecture, the SNMP, DPI and RDPI message scheduling and the multi

registration capabilities of the dynamically extensible SNMP agent being used in

the integrated environment devoted to network management in the Perpetuum

Mobile Procura project.

2.2 Distributed Management in the Internet Community

The IETF DISMAN Working Group has taken the original idea behind the SNMP

Research Inc.'s, to distribute the management functionality amongst multiple

network managers. Here are two parts of one of the DISMAN approaches. The

Schedule MIB [23] provides a mechanism for performing management operations

14

distributed over time (temporal distribution). The Script MIB [24] provides a

mechanism for delegating some kind of executable code (script [22]) for

performing management tasks in remote network elements (spatial distribution).

2.2.1 The DISMAN Scheduling MIB

The Scheduling MIB (schedMIB) provides the support for network management

systems to launch scheduled SNMP management events at certain times.

The schedMIB.schedObjects subgroup details the scheduled management events;

it contains a scalar object, the schedLocalTime, providing the local time

information used by the scheduler1 and a tabular object, the schedTable, where

the scheduled events are maintained.

Figure 2.1 shows the schedMIB.schedObjects MIB group structure as defined in

[23].

schedTable is doubly-indexed by the schedOwner and schedName attributes

allowing multiple users to schedule events on an agent and a user to schedule

multiple events.

schedType indicates the type of scheduling the event in a particular entry. There

are three types of scheduling:

15

• Periodic. The management operation is triggered at particular time

interval. For instance, a set operation can be scheduled every 24 hours

(once a day). The schedInterval attribute indicates this time interval.

• Calendar. The management operation is triggered on a weekday-month-

day-hour-minute basis. For instance, a set operation can be scheduled on

Friday-*-*-23-00 basis (every Friday at 11 pm). schedWeekDay,

schedMonth, schedDay, schedHour, schedMinute attributes provide the

scheduling time for a calendar event.

• One-shot. The management operation is scheduled on the same basis as

the calendar but the operation itself is triggered once and then disabled.

However, the Scheduling MIB provides capabilities for setting only a single

integer and local MIB variable per event. The schedVariable attribute indicates

which local MIB variable's object identifier will be written to the value indicated

by the schedValue attribute. The set operation triggers an action that can produce

a transition in the state of the managed object. More complex management

scenarios wishing to schedule multiple variables and/or non-integer data require

the combination of this management MIB with other ones. For example,

combining the Schedule and the Script MIBs, management functions can be

delegated to remote network devices and launched on a time basis.

1 A scheduler identifies an schedMIB implementer, which is responsible for launching scheduled events.

16

Figure 2.1 The DISMAN Scheduling MIB

schedMIB

schedObjects

schedLocalTimes

schedTable

schedEntry

schedOwner

schedName

schedDescr

schedInterval

schedWeekDay

schedMonth

schedDay

schedHour

schedMinute

schedContextNam
e
schedVariable

schedValue

schedType

schedAdminStatus

schedOperStatus

schedFailures

schedFailed

schedStorageType

schedRowStatus

17

The experiences obtained in the implementation of the Scheduling MIB at SNMP

Research Inc. [26] suggests that an extensible SNMP agent2 architecture can be

used to overcome the capability of the Scheduling MIB to access only local MIB

variables. They come up against the drawbacks of having the schedTable doubly

indexed with the owner and event name attributes when doing ad hoc SNMP get

and set requests and the fact that general MIB browser tools do not support octet

strings table row indices in a human readable format. They strongly advise about

the possibility of the occurrence of the cumulative processing delay and the

daylight saving time changes problems if they are not correctly addressed.

2.2.2 The DISMAN Script

The Script MIB module is an approach to integrate the MbD model in the Internet

network management framework. It provides a SNMP based network

management system with capabilities for a manager to delegate management

scripts into SNMP entities acting in the agent role (distributed managers).

Distributed managers who implement the Script MIB provide the mechanisms to

move the code and to launch the execution of management scripts being delegated

by managers and allow managers to control the life cycle of the delegated scripts.

The Script MIB consists of six tables structured as shown in Figure 2.2.

2 A discussion about extensible SNMP agents comes in section 2.3.

18

The smLangTable and smExtnTable provide information about the languages and

language extensions supported by the distributed manager.

Figure 2.2 The DISMAN Script MIB

The smScriptTable maintains a list of all management scripts known to that

particular distributed manager. The Script MIB supports two mechanisms for

moving script codes to distributed managers, the push-model and the pull-model.

Pushing a script probably requires managers to split the script code into pieces

and move them to the distributed manager in a sequence of SNMP set requests

and store them in the smCodeTable. Pulling requires managers to supply the URL

specifying the location of the script code and the protocol for retrieving it via a

scriptMIB

smObjects

smLangTable

smScriptObjects

smScriptTable

smCodeTable

smRunTable

smLaunchTable

smRunTable

smExtsnTable

19

SNMP set request. The URL is written down into the smScriptTable and only the

Script MIB implementation is responsible for downloading the code from the

URL.

The Script MIB provides the mechanism for executing, managing the execution,

and retrieving the state and the results of delegated scripts. The smLaunchTable

and the smRunTable describe the scripts that are ready to execute and control its

execution respectively. Managers can start, suspend, resume, and stop executing

scripts; they can also retrieve the current execution status of scripts, error codes,

and their results.

However the delegation of management scripts in the Script MIB is accomplished

under the Internet network management framework, the manager-agent

interaction exhibits certain degree of granularity, called micro-management,

through the delegation process. Managers must issue various SNMP set requests

and poll particular variables until a certain value indicates the termination of

asynchronous actions at the distributed manager side.

Managers must also micro-manage the updating of management scripts by

stepping the distributed managers through it.

For either uploading or downloading management scripts, the Script MIB does

not provide a higher level naming mechanism but the IP addressing scheme. For

20

uploading management scripts, managers use the SNMP protocol and therefore

the distributed manager is located via its IP address. For downloading

management scripts, distributed managers use the scripts' URL previously written

by the manager; again, references are obtained from an IP address.

Nevertheless, although these and other problems that arise because of the low

level and fine grained interactions the SNMP protocol imposes for accessing MIB

variables, the delegation of management functions the IETF DISMAN framework

has proposed, enhance the Internet management framework towards a distributed

management environment. It distributes management functionality upon several

and collaborative SNMP entities, managers and distributed managers; it is able to

cope with situations that arise over non-permanent network connections. The

IETF DISMAN Working Group is also working on the Event, Expression, and

Notification MIBs to complement the management functionality distribution.

Two experiences in the implementation of the IETF Script MIB also suggest

different approaches have advantages and disadvantages that are specific to the

application domain. Where possible, they can be combined and provide better

solutions than used as stand-alone tools. Silicomp Research Institute implemented

the Script MIB on a small networked device [29]. They extended the

implementation slightly to accommodate some needs they wanted related with

time control, inter-script dependencies and script version information. On the

other hand, the Java Script MIB Implementation (JASMIN) project [19],

21

developed by the Technical University of Braunschweig and the NEC C&C

Research Laboratories Berlin, implements the IETF Script MIB. Again, two

extensible SNMP agents provide the support for the Script MIB: the commercial

SNMP Research Inc. ‘s Enhanced MANagement Agent Through Extensions

(EMANATE) SNMP agent toolkit [48] and the free-available UCD-SNMP agent

[54] from University of California at Davis. They have analyzed [51] the time and

memory consumption on the most frequently used operations, e.g. installing,

starting, suspending, resuming and deleting a script, etc.; they have also estimated

the time spent by the Java runtime engine's operations measuring the response

time of the SMX commands.

2.3 Extensible Agents

Dynamic extensibility has been used to support the MbD model in network

management environments as an alternative to overcome the limitations derived

from centralized paradigms. Extensible agents are MbD agents that, upon requests

by other management entities, they incorporate or delete managed objects and

management services at run-time.

One approach based on the extensibility of management entities is the work being

done by Sun Microsystem Inc. and other leading companies in the development of a

set of standard specifications to equip the Java technology with a universal

22

extension for distributed management, the Java Management eXtension (JMX)

[52].

The JMX specifications propose a distributed management architecture based on

manageable resources, a dynamically extensible agent and distributed management

applications as shown in Figure 2.3. The JMX architecture is divided into three

levels:

• the instrumentation level,

• the agent level and

• the manager level.

The instrumentation level specification provides the means to implement JMX

manageable resources (managed resources), through a type of Java object that

implements specific management interfaces known as Managed Bean (MBean for

short). MBeans can be standard or dynamic, meaning that they expose the

management interface at run-time. Besides, JMX proposes a notification

mechanism for MBean instances to send notifications to components of the other

levels.

The agent level provides the JMX agent specifications, which control the resources

and make them available to the management applications. The JMX agent is a

management entity composed of a MBean server, a set of agent services and at

23

least one protocol adaptor or connector, which provides the communication

services. The MBean server is the central registry for MBeans in the agent: all

manageable resources wanting to be managed must be registered as a MBean in the

server and all management operation requests for MBeans will go through this

server. Agent services are also MBeans that perform management operations on

other MBeans, for instance, location services, dynamic class loading, monitoring

certain threshold values and notifying the change to others, a scheduling

mechanism.

Figure 2.3 JMX Architecture

Instrumentation
Level

Connector or
Protocol Adaptor

MBean
server

resource resource

PA C

Web Browser

service

Manager Level

Agent Level

JMX –Manager

C

JMX-compliant
Mgmt. Appl.

24

Although the manager level is not included in the present phase of specifications,

the idea is that management applications can request management operations to a

JMX agent for getting and setting MBean attribute values and performing

operations on MBeans. Management applications can also get notifications from

MBeans, instantiate, and dynamically register new MBeans with the JMX agent

In addition, it provides two management protocol APIs to integrate JMX compliant

management applications with management systems: the SNMP manager API and

the CIM/WBEM manager and provider API. They are sets of Java classes, which

allow JMX-enabled management applications to access SNMP agents and

CIM/WBEM Object managers respectively.

The second approach is based on extensible agents as MbD agents that model a

distributed MIB in a master/subagents architecture where the MIB consists of a

static MIB residing in the master agent and several distributed subagents that

dynamically register portions of the MIB and interface the real managed objects.

Extensible master agents require a kind of protocol interface to extend their

capabilities to receive requests from the subagents to dynamically

regiter/unregister MIB variables and, of course, to delegate to the subagents the

appropriate requests for the MIB variables from the network manager side.

25

2.3.1 Extensibility implementations

The EMANATE architecture consists of an extensible Master Agent, a two part

Application Programming Interface (API) and several subagents that can be

developed and dynamically connected to the Master Agent at run-time. The SNMP

Master Agent is the centerpiece of the EMANATE architecture that contains the

SNMP engine supporting the three SNMPv1, SNMPv2c, and SNMPv3 versions of

the management protocol; it manages the SNMP agent/subagent communication for

registration, deregistration and lookup services; Master Agent provides multi-

threading support for handling concurrent incoming messages asynchronously.

EMANATE allows third parties to develop MIB-extending subagents that can be

started and stopped independently of the Master Agent or other subagents. Master

Agent allows different subagents to register the same MIB objects with the result

that different rows of the same tabular object can reside in different subagents and

the master deals with them in a priority based mechanism. EMANATE portability

and efficiency has been based on the two part API: the system-independent API

provides application developers with an easy way to port applications over different

platforms and the system-dependent API optimizes the use of the resources in the

underlying operational environment.

The public UCD-SNMP agent from University of California at Davis is another

extensible SNMP agent, originally based on the Carnegie Mellon University SNMP

(CMU-SNMP) implementation. An analysis of the two CMU-SNMP and UCD-

SNMP agent data models can be found in [54] by the virtue of being the basis of

26

the Perpetuum Mobile Procura project's XMS-SNMP agent design. The UCD-

SNMP agent v 4.1.1 has been released recently.

2.3.2 The XMS-SNMP agent

The eXtended Mobility Supported SNMP agent (XMS-SNMP agent) [57, 37] of

the Perpetuum Mobile Procura project is an extensible SNMP agent supporting

an advanced network management model using mobile agents. The XMS-SNMP

agent provides support for:

1. mobile agents arriving at the same network element (NE) of the agent and

acting in the role of subagents (mobile subagents) extend the existing SNMP

MIB tree, and

2. mobile agents arriving at the same network element (NE) of the agent and

having management capabilities request data from the existing SNMP MIB

tree.

2.3.2.1 The XMS-SNMP Agent Functional Architecture

Figure 2.4 shows the functional architecture of the XMS-SNMP agent.

27

The XMS-SNMP master agent uses the lightweight SNMP Distributed Protocol

Interface (DPI) as the protocol supporting communication between the master

agent and subagents that, taking advantage of the master agent and subagents

locality, do not deal with ASN.1 details and BER encoding rules as the SNMP

protocol does.

The DPI interface allows resident mobile agents to dynamically

register/untegister MIB variables at run-time requiring neither re-compilation nor

re-starting the agent nor forcing the agent to re-read a configuration file.

In a typical scenario, an arriving mobile agent subagent extending the MIB sends

a DPI open request to establish a communication link with the XMS-SNMP agent.

Then, the subagent requests the registration of the MIB groups it supports. Once

the registration process is complete, the subagent waits for requests from the

XMS-SNMP agent for accessing the extended MIB objects. Occasionally, the

subagent sends trap the agent receives and forwards them to an SNMP manager.

Either the subagent or the XMS-SNMP agent can unregister the extended MIBs

and can close the connection at any time.

The XMS-SNMP agent allows multiple subagents to register MIB sub-trees

simultaneously; a subagent can register multiple MIB sub-trees and, a MIB sub-

tree can be registered by multiple subagents.

28

Figure 2.4 The XMS-SNMP Agent Functional Architecture

The lightweight SNMP Reversed DPI (RDPI) interface is used by the XMS-SNMP

agent to accept management requests from arriving mobile agents acting in the

role of a manager and wishing to access MIB variables, and the SNMP interface

to communicate with remote manager applications via the SNMP protocol.

Taking advantages of the local communication, the RDPI protocol processes

incoming requests and creates responses more efficiently. The RDPI protocol is

fully described and a comparative analysis of RDPI and SNMP can be found in

[57] and [37] . In section 6.2 of this thesis the average response time of

XMS-SNMP Engine

static MIB

DPI interface

SNMP interface

R
D

PI
 I

nt
er

fa
ce

29

management operations is measured and shows how much faster is RDPI in

decoding packets than SNMP.

The XMS-SNMP Engine dispatches management requests from these interfaces,

providing access to the MIB variables including the extensions currently provided

by subagents via DPI.

2.3.2.2 The XMS-SNMP Agent Data Model

The basis of those multi-registration capabilities resides in a dynamic three-

dimensional data model and how the XMS-SNMP agent schedules the processing

of messages from different interfaces.

Figure 2.5 shows the XMS-SNMP agent data model used to organize the MIB-

sub-trees registered with the agent, the list of subagents registering each MIB sub-

tree and, the list of MIB sub-trees registered by each subagent.

 1. A double linked header, subtreeList, points to a double linked list of subtree

structures. Each structure represents a static (built-in) or dynamic MIB sub-

tree.

 2. If dynamically registered, the MIB sub-tree structure has a pointer to a double

linked header, regTreeList, pointing to a double linked list of registerTree

30

structures. There is one registerTree in the list for each subagent registering

this MIB sub-tree. Each registerTree structure contains the parameters with

which the subagent has registered this MIB sub-tree and a pointer to the

subagent itself.

 3. The subagent structure has a pointer to regTreeSet, an array of pointers to all

registerTrees registered by the subagent with the XMS-SNMP agent.

Figure 2.5 The XMS-SNMP Data Model

regTreeSet

dynamic subTree

regTreeList

. . .

registerTree

subagent
subagentList

subTreeList

31

2.3.2.3 The XMS-SNMP Agent Message Scheduling

The XMS-SNMP agent receives and schedules SNMP messages as well as DPI

and RDPI messages.

Extending the XMS-SNMP agent's MIB

A subagent happens to send a DPI message to open or close a connection, and to

register or unregister MIB sub-trees with the XMS-SNMP agent.

If a DPI open message is received, the XMS-SNMP agent simply creates a

subagent structure and concatenates it in the XMS-SNMP agent's subagentList.

If a DPI register-a-MIB-sub-tree message is received, the XMS-SNMP agent

• searches in the subagentList;

• creates a subTree structure if needed, and inserts it in the subTreeList,

• creates the registerTree structure for the MIB sub-tree being registered by this

subagent, adds it to the subagent's regTreeSet and,

• inserts the registerTree into the MIB sub-tree's regTreeList.

32

The registerTree structure is built with a priority value argument and the

regTreeList is maintained in a priority order ranging from 1 to 128; the highest

priority the lowest value is first. The priority order is determined as follows:

a) If the registerTree to be inserted comes with priority value equal to –1, it will

try to register the MIB sub-tree with the highest priority, if available. If

succeeds, the new subagent registering the MIB sub-tree becomes its

authoritative subagent.

b) If the registerTree's priority value is equal to zero, it will try to register the

MIB sub-tree with the next to its current highest priority. If succeeded, the

new subagent registering the MIB sub-tree becomes its authoritative subagent.

c) In other cases, it will try to register the MIB sub-tree with the specified or next

higher priority.

Accessing the MIB

 The XMS-SNMP agent receives and schedules SNMP and RDPI requests for

management applications.

Either an SNMP or an RDPI request, for each MIB variable in the variable-

binding list coming in the received message, the variable sub-tree ID3 is extracted

from its object identifier (OID) and it is searched through the subTreeList. If it

succeeds and the sub-tree is dynamically registered, the agent creates a DPI

3 An object identifier (OID) usually comprises a sub-tree ID and an instance ID.

33

message, sends it to the authoritative subagent and waits for the response to

forward it to the requesting application.

2.3.2.4 The XMS-SNMP Management MIB

The XMS-SNMP agent also allows SNMP-based management of the extended

platform itself. Management information is available and organized into the hard-

wired xmsAgentMIB MIB group that provides SNMP-based monitoring and control

capabilities of mobile agent subagents and their dynamically registered MIB sub-

trees.

Figure 2.6 displays the position in the OSI registration tree and the organization of

the xmsAgentMIB MIB group and the subagentMIB and the registerTreeMIB

subgroups as defined in [57].

The subagentMIB subgroup comprises the subagentNumber variable and the

subagentTable tabular object. The subagentNumber represents the current number

of subagent entries in the table and, each subagent entry in the subagentTable has a

number of variables describing the attributes of a mobile subagent. Each subagent

entry has the current number of sub-trees that the subagent has registered. It also

has a variable called subagentAdminStatus, for allowing remote network manager

to close the agent-subagent connection.

34

Figure 2.6 The XMS-SNMP Agent Management MIB

If an SNMP or RDPI set request is received to change the subagentAdminStatus

variable to 1, the agent will:

• create and send a DPI close message to the subagent,

• remove the subagent from the subagentList,

• remove every registerTree in the subagent's regTreeSet from the corresponding

regTreeList,

• if any of the regTreeList is empty, remove the corresponding subtree from the

subtreeList

The registerTreeMIB subgroup comprises only a tabular object called the

registerTreeTable. Each entry in the table describes the attributes of a registerTree

(see subsection 2.3.2.1 above) registered by a subagent. The

xmsAgentMIB (iso org dod internet experiment 100)

subagentTable (2)

subagentMIB (1)

registerTreeMIB (2)

subagentNumber (1)

registerTreeTable(1)

35

registerTreeAdminStatus is the variable for allowing network manager to

unregister a registerTree.

If an SNMP or RDPI set request is received to change the value of the

registerTreeadminStatus of a registerTree, it will:

• create and send a DPI unregister message to the subagent,

• remove the registerTree from the registerTreeList,

• if the registerTree is empty, remove the subtree as well, and

• nullify the pointer in the subagent regTreeSet.

2.4 Summary

Delegation techniques have been proposed to address the problems that arise in

network management systems because of the rapid growth, heterogeneous

environment, and geographical and administrative distribution facing today’s

telecommunication networks. This is the case with the XMS-SNMP agent of the

Perpetuum Mobile Procura project, which implements an extensible SNMP agent

with the purpose of integrating a mobile agent environment into an SNMP-based

network management system.

Mobile agent technology brings new opportunities for decentralization in network

management systems that the delegation of management scripts model does not. In

36

the DISMAN Script MIB model the network manager always triggers the code

migration, and there is no mechanism for autonomous mobility for these delegated

scripts. The DISMAN framework suggests the manager can delegate management

functionality along a pre-established (static) hierarchy of SNMP entities comprising

the overall management system. However, mobile agents can also follow a pre-

established migration path or alternatively, they can implement the migration path

of their own or ultimately can select its migration path heuristically, allowing data

collection and processing closer to the originator; providing a better use of network

bandwidth reducing management traffic; enhancing flexibility and adaptability

when coping with unexpected (and unwanted) breakdowns and non-permanent

links; etc. Mobile agent technology also proposes inter-agents and mobile agent-

management systems communication mechanisms network protocol-independent

but the communication capabilities in the script MIB model are based only on

HTTP, FTP and SNMP.

Therefore, MbD can benefit from the advent and development of the mobile agent

technology. The next chapter discuses the mobile agents capabilities for network

management.

 37

Chapter 3 Mobile Agent Environment for Network

Management

3.1 Introduction

This chapter makes a comparative review of two standardization initiatives for

agent systems interoperability, the Object Management Group (OMG) standard

known as the Mobile Agent System Interoperability Facilities (MASIF) and the

Foundation for Intelligent Physical Agents (FIPA) standards, FIPA specifications.

The mobile agent framework discussed here is the Mobile Code Toolkit (MCT), the

mobile agent infrastructure of the Perpetuum Mobile Procura (PMP) project.

PMP is devoted to advanced network management using mobile agent technology.

The advent of new technologies like the OMG’s Common Object Request Broker

Architecture (CORBA) [34] and mobile agents have created new potential for the

development of scalable, heterogeneous and distributed network management

systems.

The distributed object architecture paradigm adopted by CORBA is one of the

approaches to handle the complexity and heterogeneity of network management

systems. One of the key advantages of CORBA is that it provides open interfaces

for integration of existing management solutions, distributed management

components communicate exchanging management information using these

standardized interfaces over networks consisting of devices from diverse vendors.

 38

Its distribution capabilities make CORBA-based solutions to manage large number

of network devices in a scalable manner. Its object-oriented paradigm proposes a

higher level approach simplifying the development of distributed management

services. Location-transparency object manipulation, and language and operating

system independence are also characteristics CORBA-based solutions can provide

to network management systems.

Particularly for managing large scale, heterogeneous and dynamic

telecommunication networks, the use of CORBA has being focused on

interoperability with the OSI Systems Management (OSI-SM) framework [39]. As

in SNMP, the architecture of the OSI-SM for the ITU-T Telecommunication

Network Management (TMN) [39], is based on the manager-agent paradigm and

the information being specified uses the Guidelines for the Definition of Managed

Objects (GDMO) [39]. The object location and representation transparency, and

the relatively ease to learn and use are CORBA properties that benefit distributed

TMN system requirements, complemented by the OSI-SM as the technology for

management information exchange. The OMG’s Joint_Inter-Domain Management

(JIDM) [20] group has been working on the mapping between GDMO/ASN.1 to

CORBA IDL, and between SNMP SMI and CORBA, the specification of generic

gateways between different management technologies and the JIDM agent as the

architecture of a management agent (TNM agent) that defines objects as individual

CORBA objects and where the relations between object instances are also modeled

using CORBA references.

 39

However network management systems are also interested in dynamic behavior,

modifying dynamically the management capabilities of the network elements and in

managing distributed resources that might request location information, instead of

having predictable management functionality through static object platforms such

as CORBA does. Then, the paradigm of moving management logic closer to the

management data when required is considered.

Mobile agent is another essential technology for the development of distributed

software applications because of the capabilities of mobile agents to move across

distributed environments, integrate with local resources and other mobile agents,

and communicate their results back to the user or authority on behalf they are

acting. Particularly in the field of telecommunications, the decentralization of

management functionality benefits from their integration with the mobile agent

technology.

Their cooperative, autonomous and migratory nature make mobile agents better

suited to overcome the limitations the SNMP framework imposes even when

integrated with other distributed design technologies; for example, with the Script

MIB model or CORBA. Mobile agents can be equipped with specialized

management tasks and then deployed to the network elements. In performing their

tasks, mobile agents migrate autonomously from one NE to another, as close to

managed resources as possible, access the managed data; and operate

 40

independently, minimizing the manager interaction. Because of the ability of

mobile agents to communicate with each other, they can cooperate with other

exchanging data and logic, bringing management system capabilities to distribute

management tasks in a composition of small, collaborative, and intelligent mobile

agents. Management mobile agents can provide network manager applications with

a suitable level of abstraction; the way the managed data are organized and the

operations to access them are wired into the management mobile agents, frees the

network manager to be aware of these low level operative tasks.

By virtue of the increasing availability of agent platforms, an important goal in

agent technology is the interoperability between different agent systems, meaning

the cooperation among agents from different agent platforms of different

manufacturers. These two standardization bodies related to agent technology are

addressing interoperability of agents from different manufacturers in order to fulfill

the requirements of today’s dynamic, heterogeneous and distributed service

provisioning applications. Section 3.2 reviews the OMG’s MASIF and the FIPA

specifications. Section 3.3 presents the functional architecture of the PMP project’s

mobile agent platform, the Mobile Code Toolkit (MCT). It also presents the mobile

agent management capabilities, the location services and migration history control

in a MCT environment.

 41

3.2 Initiatives for Agent System Interoperability

An agent platform is a software environment in which software agents run [14]. It

provides support for software agents to execute, to manage their execution, to

access system resources, and to guarantee integrity and protection of agents and the

platform itself. Agent platforms also provide support for migration, naming,

location and communication services.

Although developed for general or specific purposes, at the top of different host

operating environments, using different software design technologies, the current

variety of different agent platforms is exhibiting certain common trends. They

provide Java-based agent environments and platform services based on middleware

like CORBA IIOP and Java’s RMI where communication and migration

capabilities are built at the top of them.

MASIF agent interoperability is based on agent platforms that providing the same

programming language environments, the agent system type, and the serialization

and authentication mechanisms, enable mobile agents to migrate from one to

another. FIPA specifications agent interoperability is based on remote

communication services.

 42

3.2.1 MASIF and FIPA similarities

For both, the Object Management Group's Mobile Agent System Interoperability

Facilities (MASIF) standard [36] and the Foundation for Intelligent Physical

Agents (FIPA) specifications [9, 10], the main goal is to establish the common

basis for heterogeneous agent platforms to enable interoperability amongst them.

Figure 3.1 and Figure 3.2 show the MASIF and FIPA agent reference models

respectively. Some structural and functional similarities have been identified in

both technologies.

1. MASIF region and FIPA domain represent a set of distributed and co-

operating agent platforms that belong to the same authority. In these contexts,

they are regarded as security domains.

2. MASIF agent system (agency) and FIPA Agent Platform (AP) are the

software systems where agents reside and execute.

3. MASIF place and FIPA domain can be compared in the sense that they group

agents in a logical execution environment. An agency supports multiple places

and a FIPA AP supports multiple domains (a domain can also comprise

multiple APs).

 43

4. The MASIF MAFAgentSystem interface and the FIPA Agent Management

System (AMS) component provide the mechanisms for managing the life cycle

of agents executing in the platform. They define the management operations

to create, suspend, resume, terminate, and migrate agents.

Figure 3.1 The MASIF Architecture

5. The MASIF MAFFinder interface and the FIPA Directory Facilitator (DF)

component provide the methods for maintaining dynamic registration services.

 Region

MAF
Finder

MAF
Agent
System

 Agency

Place

Basic
Agency
Service

Agents

Communcation Channel (ORB)

Enhanced
Agency

 44

6. The MASIF MAFFinder interface and the FIPA AMS define the naming and

location directory.

7. The MASIF Communication Channel and the FIPA Agent Communication

Channel (ACC) address the communication facilities.

Figure 3.2 The FIPA Reference Model

Domain

 Agent Platform

Internal Platform Message Transport

ACC AMS DF DF

Domain

Communication Channel(ORB)

Agents

 45

3.2.2 MASIF and FIPA differences

Nevertheless, OMG MASIF work is primarily based on mobile agents (mobile

agent) traveling amongst agent systems of the same profile4 via the CORBA IDL

interfaces and does not address the inter-agent communication at all. On the other

side, FIPA specifications focus on intelligent agent (IA) communications via

content languages and do not say much about mobility.

Within a mobile agent paradigm, the co-operation in distributed dynamic

environments is realized through the encapsulation of the delegated functionality

into the mobile agents and deploying them to the network where they can best

perform their tasks, thus taking advantage of the local communication. MASIF-

compliant platform functionality is accessible via two CORBA IDL interfaces, the

MAFAgentSystem and the MAFFinder. They are defined at the agent system level

rather than at the agent level to address the interoperability concerns. Figure 3.3

shows a typical sequence of an agent looking for the destination agent with which

it wants to communicate.

On the other side, within an agent communication paradigm, IAs (mostly static)

co-operate via the Agent Communication Language (ACL), the content language

based on predicate logic and the ontology which identifies the set of basic

concepts used in the message content for co-operation. In FIPA specifications, all

agents have access to at least one Agent Communication Channel (ACC) that

 46

support the path for basic contact and interchange among agents, including the DF

and AMS. Inter-platform communication takes place via an ACC, being CORBA

IIOP the recommended default communication protocol.

Figure 3.3 Finding a Destination Agent

The FIPA ACL [9] provides an interface for exchanging messages among agents.

It derives from the Knowledge Query and Manipulation Language (KQML) [55].

It is based on speech act theory: messages are actions, or communicative acts, as

they are intended to perform some actions by virtue of being sent. Figure 3.4 is an

example of an FIPA ACL message.

4 An agent profile refers to the agent system type, programming language, authentication and
serialization methods.[34]

// . . .
mafFinder mFinder;
try {
 // get the mobile agentFFinger reference
mFinder = agentSystem.get_mobile agentFFinder();
} catch (FinderNotFound fe) {
 System.out.println("mobile agentFFinder not available");
 exit();
}
Location destLocation;
Name destAgentName = new Name("public", "destAgentID", 0);
try {
destLocation = mFinder.lookupAgent(Name, null);
} catch (EntryNotFound e) {
 System.out.println(destAgentName+" not found in region");
exit();
}
// destLocation specifies the agent system where the agent
// resides currently. It must be converted to the object reference of the
// agent system.

 47

Ontology is an explicit specification of some topic. It includes a vocabulary of

terms in the subject area, the integrity constraints on these terms, and the logical

statements describing their meanings and how they are related to each others. The

FIPA Ontology Service specification [10] deals with technologies for definition

and management of ontology.

Figure 3.4 FIPA ACL Message

The FIPA Agent Management Support for Mobility specification [10] proposes

the minimal set of technologies required for supporting agent mobility using the

FIPA agent platform. The reference model recognizes there are different forms to

express mobility, such as code mobility, agent migration, and agent cloning. FIPA

Communicative act type Begin
message
structure

Message
content

Message
Parameter

(request
 :sender source-agent@iiop://eureka.sce.carleton.ca:50/acc
 :receiver a-df@iiop://eureka.sce.carleton.ca:50/acc

:language s10
:reply-with id2543
:protocol fipa-request
:ontology fipa-agent-management)

:content
 (:action a-df@iiop://eureka.sce.carleton.ca:50/acc
 (search
 (:df-agent-description
 (:agent-name
 dest-agent@iiop://eureka.sce.carleton.ca:50/acc)
 (:df-search-algo depth-first max 1)
 (:df-search-resp-req max 1)))

 48

provides a set of primitive actions to support extensible forms of mobility

protocols, including move, transfer, execute and terminate.

The agent communication paradigm adopted by FIPA supports a higher level of

interoperability between heterogeneous systems given that MASIF

interoperability is based on agents systems written in the same programming

language.

The agent communication paradigm can better express the nature of co-operation

and is more suitable for integration with other artificial intelligent technologies;

therefore, it will be useful in a wider range and more complex applications.

The mobile agent paradigm can be more appropriate in situations where dynamic

and autonomous swapping, replacement, modification, and updating of

application components are required.

Both the mobile agents and the agent communication paradigms have advantages

and disadvantages that are application-domain specific, such as the applicability

of MASIF-compliant or FIPA-compliant agent systems. Therefore, some

important issues arise regarding these two agent-based distributed software design

technologies in the context of telecommunication applications. For instance, can

the prevalence of either MASIF or FIPA or both technologies be envisaged?

Would it be desirable to combine the two technologies? How can MASIF and

 49

FIPA technologies be combined into a unified mobile agent framework? How can

MASIF and FIPA inter-operate?

Annex A of the FIPA 98 Part 11 specification [10] makes a proposal with four

variants in order to realize a MASIF- and FIPA-compliant agent platform. The

first two variants are based on modifications to the existing MAFAgentSystem and

MAFFinder, the MASIF standard interfaces. The third variant proposes the

extension of the MASIF standard with new interfaces to achieve the FIPA

specifications in the unified agent platform. The fourth one argues for the

provision of low-level methods to the FIPA specifications as defined in MASIF

standard.

Annex C of the ACTS5 baseline document [28] analyses the possibilities of

MASIF/FIPA integration. The IAs with intelligent mobility approach extends the

concept of "message agent", considering mobile agents as a special kind of agent

communication message content, meaning ACL containers will identify the type

of content as mobile agent with a particular agent profile. The MASIF/FIPA

interoperability via a IDL/ACL Gateway on mobile agent Agent System uses an

IDL/ACL gateway installed in a dedicated MASIF agent system to enable the co-

operation between non-ACL mobile agents and remote IAs. The mobile agent

with Intelligence approach adds another facility to the MASIF environment: a

5 ACTS is an European research collaborative program for Advanced Communications, Technologies and
Services [ACTS99].

 50

FIPA ACC for ACL communication, suggesting the implementation of ACL

speech acts in IDL to maintain the lightweight feature of the mobile agents.

3.2.3 MASIF and FIPA implementations

Concerning agent platform development, the IKV++ ’s Grasshopper [18] is a

mobile agent and runtime platform developed in Java, built upon a distributed

object-oriented middleware and compliant with the OMG MASIF standard. Its

Distributed Agent Environment (DAE) is composed of regions, agencies, places

and agents.

From a MASIF perspective, in a Grasshopper DAE, the region provides

management capabilities, location services and facilitates inter-agency

communication for agents. All agencies and their respective places associate with

a region as early as they are created by registering within the region registry and

remain associated with this single region for all their lifetime. Agents are also

registered with the registry and if mobile, the registry is updated each time mobile

agents migrate from one agency in the region to another. A Grasshopper region

implements the MASIF MAFFinder interface to provide other entities with the

abilities for locating agents, places and agencies residing in the region.

 Agencies consist of a core agency and various places. The core agency

implements the MASIF MAFAgentSystem standard interface and provides

 51

management, registration, communication, persistence, communication, security,

and transport services to the agent execution environment. Agents can be of two

types, mobile or stationary.

Besides the CORBA-based MASIF standard interfaces, Grasshopper core

agency’s Communication Service (CS) provides agencies and agents with

location-transparent remote communication using CORBA IIOP, Java’s RMI, and

plain socket connections and the last two can optionally be protected with the

Secure Socket Layer (SSL). As shown in Figure 3.5, from the agent’s point of

view, there is no difference between remote and local method invocations by the

virtue to the use of proxy agents. In addition, in a Grasshopper DAE, the inter-

agent communication protocol is determined dynamically and since they are

realized via plug-in interfaces, it can easily be expanded with other

communication protocols.

Grasshopper is also a Java-based agent development platform. An agent is

composed of one or more Java classes, the one of them that builds the actual core

of the agent is specified as the agent class. They provide proprietary and MASIF

complaint interfaces allowing agents to access to the Grasshopper DAE

functionality, the local and remote agencies, and region registry.

Its management functionality is divided in three categories, including the agency,

place and agent management that are available through a graphical interface known

 52

as the Agency Console and through its Application Programming Interface

(Grasshopper API) as well. Management capabilities are summarized in Table 3.1

Figure 3.5 Location Transparency in a Grasshopper DAE

IKV++ has announced the next generation of the mobile agent platform,

Grasshopper-2, which integrates both MASIF and FIPA agent standards but there

is not information available saying how far the environment is FIPA compliant.

 1,2,4 Local method invocation CS: Communication Service
 3 Remote method invocation

3

2

Server Agent
Client Agent

Proxy Agent

Protocol
Plugins

..

Remote interfaces to
supported protocols

Communication Channel(ORB)

Agency A Agency B

CS CS

1

4

 53

 Categories

 Agency Place Agent

 Agent Catalog Creation Creation

 Configuration of Preferences Removal Removal

 Monitoring events Suspension Suspension

Events Thread Monitoring Resumption Resumption

 Agency termination Cloning

 Copying

 Migration

 Saving

 Action invocation

Table 3.1 Grasshopper Platform Management

Another implementation comes from IBM. IBM’s Aglets [16] are Java objects

that can execute on a host, halt its execution, move to another host in the network

and resume its execution there. The Aglet architecture consists of two layers: the

Aglets Runtime Layer and the Communication Layer.

The Communication API conforms to the MASIF MAFAgentSystem interface and

it is possible to integrate not only with CORBA IIOP but also with Java RMI and

the proprietary Aglet Transform Protocol (ATP). Actually, the current

implementation supports ATP and RMI; CORBA transport layer is not supplied

yet. The MAFAgentSystem interface is an abstract class that is implemented in two

 54

classes: one provides the agent system facility and the other is the protocol-

dependent stub object. In this case, a client aglet, as shown in Figure 3.6,

explicitly choose the corresponding stub object for a particular protocol to

communicate with its destination.

Figure 3.6 Aglet Communication Layer Architecture

The third example is the FIPA-OS from Nortel Networks [32]. The FIPA-OS is a

publicly available FIPA compliant agent platform. FIPA-OS is an agent runtime

and development platform using Java 1.2.2 JDK and has been tested on Windows

95, Windows NT, Linux and Solaris operating environments. In addition to the

Application

Aglet
Framework

ATP-stub

CORBA-stub

RMI-stub

ATP-daemon

CORBA-daemon

RMI-daemon

mobile agentFAgentSystem

mobile agentFAgentSystem
AgletImpl

Client Server

Communcation Layer

Aglet
Framework

 55

mandatory components of the FIPA Reference Model (see Figure 3.2), the FIPA-

OS distribution provides a class hierarchy, the Agent Shell, for the development of

FIPA-OS agents. As shown in Figure 3.7, the base abstract class Agent, provides

the basic requirement of a FIPA-OS agent, the direct subclass AgentWorldAgent

adds support for inter-agent and agent-platform communication and registration

with local and remote platforms facilities are provided. The platform agents

AgentCommunicationChannel, AgentManagementSystem, and the

DirectoryFacilitator are implementation of the FIPA-OS agent shell.

Figure 3.7 The FIPA-OS Agent Shell

The FIPA-OS’s transport layer supports additional object request broker

implementations, Voyager ORB from PTS [42] or from ObjectSpace [33] that

Agent

AgentWorldAgent

AgentCommunicationChannel

AgentManagentSystem

DirectoryFacilitator

 56

simultaneously support CORBA and RMI. The content language and the agent

profile support the Resource Description Framework (RDF) encoding6 and

therefore FIPA-OS has included the SiRPAC RDF parser from W3C [60] and the

Xercer XML parser from Apache [2].

3.3 The Perpetuum Mobile Procura Project’s Mobile Code Toolkit

The Mobile Code Toolkit (MCT) [40] of the PMP project is an infrastructure for the

use of mobile agents in telecommunication network management.

The MCT is a lightweight and freely available [6] Java-based mobile agent

environment. The current implementation provides mechanisms for communication

and migration capabilities built on top of Java’s RMI and client applications can

benefit from the integration of the mobile agent paradigm with the RMI

technology.

Figure 3.8 shows the MCT environment infrastructure. In a MCT environment

(MCE), a Mobile Code Daemon (MCD) runs within a separated Java Virtual

Machine (JVM) and, at the top of this daemon, there are a number of other

components providing a number of services that provide mobile agents with an

execution environment and facilitate the performance of their management tasks.

The Mobile Code Manager (MCM) is the part in the MCD that implements the

6 RDF is a W3C recommendation for describing and interchange metadata on the Web using the
eXtensible Markup Language(XML) as the syntax descriptor [57,58].

 57

mobile agent’s life cycle model. It maintains control of all mobile agents

instantiated within the MCE and can create, start, suspend, resume, stop, and

destroy mobile agents. The Communication Facilitator (CF) is the component that

allows a mobile agent to collaborate with other mobile agents and provides the

support for local and regional location services. In an MCE, the Migration

Facilitator (MF) is the part of the MCD that provides the infrastructure with code

migration capabilities.

In addition, MCT provides a standard interface, the Virtual Managed Component

(VMC), through which mobile agents can gain controlled access to local resources.

A VMC is a stationary agent on its Network Element (NE), which encapsulates the

underlying characteristics and provides standard access and allocation services of

local resources to mobile agents. First, their stationary nature provides the MCM

with a controlled way to manage how local resources have being used. Secondly,

preventing mobile agents to gain direct access to resources provides security to the

MCE and allows lightweight mobile agents as well. mobile agents wanting to

access local resources can obtain handles to their respective VMCs from the MCM.

3.3.1 Mobile Agent Management

The MCM is the responsible to maintain the mobile agents visiting the MCE.

 58

Upon arrival and after performing the authentication checking the MCD allows a

mobile agent to run on the MCE. The MCM then instantiates and registers the

mobile agent.

Figure 3.8 Mobile Code Environment Infrastructure

During the registration phase, the MCM announces the mobile agent's instantiation

event, updates its migration history, if applicable, and depending upon whether or

NE
JVM/MCE

MCD

NE
JVM/MCE

MCD

Managed Resources

 JVM/MCE

MCD

MCM
MF

CF

NE

NE

JVM

Mediator

VMC
 MA

 59

not the mobile agent has a persistent state, the MCM restores or initializes the

mobile agent.

Once instantiated, the MCM starts the mobile agent and during the mobile agent’s

lifetime, the MCM leads it to re-start its execution, to suspend temporarily and to

resume executing, to migrate to another destination, or to stop and destroy the

mobile agent. The MCM monitors the mobile agent during communication phases,

sending or receiving messages to or from other mobile agents. Appendix A shows

the chart diagram of the mobile agent’s execution status in the MCE.

The MCM provides an event-monitored mobile agent's execution status transition

model: an event dispatcher announces to external observers (event listeners) the

changes in the mobile agent's life cycle. The eventDispatcher monitors the changes

in the mobile agent status and broadcasts them to all interested parties registered as

event listeners.

3.3.2 Mobile Agent Location Services

Because mobile agents can travel around an MCD network, when a mobile agent

wants to communicate with another mobile agent, the CF needs some kind of

mechanism to locate the destination, either local or remote.

 60

A mobile agent database and the MCM’s event-monitored mobile agent's execution

status transition model are the basis of the CF location mechanism. The database is

a directory identifying mobile agents, their location, execution status and other

attributes as well.

The following subsections describe how both, the local and the remote location

mechanisms are implemented in the MCT.

3.3.2.1 The Local Mobile Agent Location Directory

The CF installs a directory, known as residents, of all mobile agents visiting the

local MCD. residents, is registered with the eventDispatcher as an event listener

in such a way that all the resident mobile agent's life cycle events announced by

the eventDispatcher are caught by residents that adds, removes or updates the

mobile agent status in the database accordingly.

3.3.2.2 The Regional Mobile Agent Location Directory

The MCT supports the concept of a region as a set of MCDs running within

separated JVMs on the top of network elements (NEs). These MCDs subscribe to

a regional mobile agent directory known as the Mediator.

 61

Mediator is the remote version of the residents. It maintains an up-to-the-minute

list of mobile agents running around the MCDs integrated in the region. Actually

remote event listeners installed in each participating MCD maintain the Mediator

directory. Again, in a MCD, a remote event listener associated with the Mediator

catches the events related to the mobile agent's life cycle. Then, it communicates

these changes to the Mediator using the RMI protocol.

residents and Mediator directories provide the MCEs with the capability to locate

mobile agents either locally or region-wide respectively, not only for inter-mobile

agent communication purposes but also for mobile agent management.

3.3.3 The Migration History

Migration is the ability of an mobile agent to stop its execution, save its state, and

transport itself from a MCD to another in the network to continue executing in the

new environment. Mobile agents can follow the default migration path established

by all participating MCDs in the network. Alternatively, they can implement the

migration patterns of their own or ultimately can select its migration path

heuristically.

The approach of a network management system (NMS) based on mobile agent, in

contrast with the traditional architecture followed by the centralized manager-agent

model used by standards like SNMP, is to distribute the management functions

 62

through the delegation of specific management tasks (Management by Delegation:

MbD) into mobile agents that are launched to the network as close the managed

resources as possible to process the management data, taking advantage of local

communication. Consequently, this NMS can be seen as a set of cooperative and

task-oriented mobile management applications.

To illustrate, let us consider the network model discovery process using mobile

agents. Discovery netlets7 or deglets8 can travel the network and dynamically create

partial and specialized network models. The discovery selection criteria to model

the network is application-oriented, in this case, management application-oriented.

It can vary from a simple set of constrains to partition the network according to

type of devices to encode more complex intelligent algorithms to manage certain

states, behavior, negotiate services, etc. For instance, to diagnose network faults,

the network manager can deploy a number of cooperative netlets that permanently

navigate the network to selectively discover network devices exceeding various

threshold values. Some of them, the active netlets, have been equipped to act

autonomously and perform, if possible, certain actions on the faulty network

devices.

Another example involving a cooperative number of mobile agents is to provide

plug-and-play capabilities for configuring network components, a number of netlets

7 A netlet in the context of the MCT, is a persistent mobile agent that migrates between network elements
and executes on each of them; it is thought to never terminate. [4]
8 A deglet in the context of the MCT, is a mobile agent sent to a remote location with a certain task to
perform; the name comes from delegation of authority; it terminates after achieving its goal. [4]

 63

or deglets can be launched to discover the network devices that will need the just

installed component drivers.

Although a migration strategy exists to govern the mobile agent’s migration path, it

may be advisable to record the actual mobile agent’s migration history. The

migration history can be used to reinforce the migration strategy, adjusting it

dynamically, or to determine when a deglet might stop executing. It can be used

with management purposes to prevent or detect network performance problems that

have arisen from the mobile agent's migration activity. The migration history can

be used to prevent and/or detect the number of visited nodes exceeding a threshold

value, multiple visits to the same network device, how far the netlet has gone from

the limits of a given network domain, and so forth. That means the mobile agent's

migration history can be used as part of the selection criteria to dynamically

construct and maintain network models with management purposes.

In the MCT the mobile agent's migration history is defined as a list of MCD

location identifiers sorted in the order by which they are visited by the mobile agent

and is maintained in the mobile agent’s MobileCodeContainer. On migration the

mobile agent, the migration history is also serialized and shipped to the next MCD

destination.

The MCM is responsible for updating the mobile agent’s migration history. When a

mobile agent is being registered by the MCM, it gets the mobile agent's container

 64

from the StorageManager, and if it is the home MCD, and the mobile agent

implements the Migratable interface, the migration history is initialized as an

empty list. In any case, if Migratable, the current MCD location identifier is added

to the mobile agent's migration history.

3.4 Summary

Autonomy, intelligence, mobility, and cooperation are capabilities distinguishing

software agents as an adequate technology to be employed in the solution of

complex distributed applications. OMG MASIF and FIPA standards are addressing

interoperability issues between heterogeneous agent systems. Software agents also

inter-operate with other software development technologies and more, software

agents inter-operate with software systems.

The next chapter describes how the MCT has been equipped with a dual VMC

implementation to integrate the mobile agent framework with the extensible XMS-

SNMP agent. These two VMCs provide MCT’s mobile agents with capabilities to

dynamically access and extend the SNMP's MIB.

 65

Chapter 4 Integrating Mobile Agents with SNMP

4.1 Introduction

This chapter discusses how the Mobile Code Toolkit (MCT) is currently equipped

with specialized SNMP management services and by the virtue of that, how mobile

agents can perform management tasks taking advantages of their migration

capabilities and of the local communication.

The basic idea for the integration of the mobile agent technology with traditional

network management systems based on protocols like SNMP, is to distribute the

management functionality spatial and temporarily throughout the network: that is,

send the code closer to the spatial and temporarily distributed managed resources

when needed. The organization of the Mobile Code Toolkit - XMS-SNMP agent

integrated management platform handles both the spatial and temporal distribution

of management services and the spatial and temporal distribution of managed

resources using mobile agents.

With the solution provided in this thesis, mobile agents can be dynamically sent to

the network element where the XMS-SNMP agent resides, have access to its MIB

variables and accomplish their management functions. They can be sent to the

targeted network element to extend the resident XMS-SNMP agent’s MIB as well.

 66

Section 4.2 describes the design and implementation through which MCT provides

the mobile agents the SNMP MIB access and extension services. Section 4.3

presents the complete MCT - XMS-SNMP agent integration environment.

4.2 Integrating the Mobile Code Toolkit with the XMS- SNMP agent

Performing their network management tasks, resident mobile agents might need

access to local resources on a network element (NE) and for this purpose the MCT

enables the Virtual Managed Component (VMC) as the standard interface through

which resident mobile agents can gain access to managed resources on the NE.

In the MCE infrastructure resident mobile agents do not communicate directly with

the extensible SNMP agent instead, mobile agents interface an intermediary VMC

that encapsulates and provides an abstraction of the underlying communication

protocol implementation and governs the mobile agent – extensible SNMP agent

interaction. Therefore, it is conceivable that multiple VMCs could be active

concurrently providing separate MCT – SNMP agent communication protocols on

the same MCE.

Moreover, from the XMS-SNMP agent’s perspective, there are two types of

interaction between the MCE and the XMS-SNMP agent:

67

I. Interaction derived from mobile agents acting in the role of subagents

(mobile subagents) and dynamically extending the XMS-SNMP agent's

MIB, and

II. Interaction derived from mobile agents requesting data from the XMS-

SNMP agent’s MIB.

Interaction derived from mobile subagents comprises three categories of messages.

I.1. Control messages:

• From mobile subagents to open, maintain and close connection with the

SNMP agent;

• From mobile subagents to register/unregister a MIB sub-tree with the SNMP

agent;

• From SNMP agent to unregister a MIB sub-tree;

• From SNMP agents to close connection with mobile subagents;

I.2. Data messages:

• From SNMP agent forwarding requests on behalf manager applications to

mobile subagents for accessing the extended MIB;

I.3. Trap messages:

• From mobile subagents sending traps to manager applications.

As indicated in Section 2.3.2.1, the XMS-SNMP agent supports MIB extension

capabilities via its DPI interface. Clearly, mobile subagents residing in the same

network element as the extensible SNMP agent, would employ the local

68

communication services provided by an intermediary VMC that hides the DPI

protocol implementation details.

Interaction derived from mobile agents requesting data from the SNMP MIB

includes not only messages requesting access to built-in SNMP MIB variables but

also includes those messages requesting access to MIB variables implemented in

mobile subagents.

The XMS-SNMP agent also accepts SNMP requests via its RDPI interface, usually

from management applications running in the same network element. Taking

advantages of the locality, mobile agents wanting to send management requests to

the local XMS-SNMP agent would employ the RPDI communication services

provided by an intermediary VMC that hides the protocol implementation details.

 These two separate processes suggest that the integration between the MCT with

the XMS-SNMP agent from the MCT’s perspective be also governed by two

independent VMCs interfacing the MIB extension and MIB access capabilities

respectively.

Figure 4.1 shows the dual VMC architecture [36] embedded in the MCE running at

the top of a Java Virtual Machine (MCE/JVM) and interfacing all MCE - XMS-

SNMP agent communication. The VMCMIBExtend provides MIB extension

capabilities to mobile agents wishing to act as mobile subagents of the extensible

69

SNMP agent. The other VMC, the VMCMIBAccess, provides MIB access

capabilities to mobile agents wishing to retrieve MIB information from the

extensible SNMP agent.

4.2.1 Mobile Agents extending the SNMP agent’s MIB

This subsection discuses a VMCMIBExtend implementation called the

MIBExtendFacilitator (MEF) component. This VMC provides MIB-extending

mobile agents with two-way SNMP DPI communication capabilities between the

mobile agent wishing to extend the MIB and the extensible SNMP agent.

This approach comes up with a VMCMIBExtend implementation as a facilitator,

which can be set up at the MCD’s startup time. At the time MIB-extending mobile

agents are being instantiated and registered with the MCM in an MEF-enabled

MCE, they are registered with the MEF.

When a MIB-extending mobile agent is registered with the MEF, as shown in

Figure 4.2, the MEF associates the MIB-extending mobile agent with an

individual DPI-enabled MIBExtenderHandler (MEH), running in a separate

thread, to handle the two-way communication between the mobile agent and the

also DPI-enabled extensible SNMP agent. At that point, the MEH is the one that

actually opens the DPI connection with the SNMP agent and registers the mobile

70

agent as a subagent9. Then, the MEF gets a reference of the MIB group list and

attaches them to the SNMP agent's MIB.

Figure 4.1 Dual VMC Architecture

Mobile agents wishing to act as an SNMP subagent extending the MIB must

implement the MIBExtender interface. A MIBExtender mobile agent is also a

VMC running in a MCD environment, implementing one or more MIB groups

and dynamically registering them with the extensible SNMP agent.

9 The XMS-SNMP agent also implements a management-MIB to maintain subagents and their dynamically
registered MIB groups in the SNMP framework.

XMS-SNMP agent

 JVM/MCE

MCD

MCM

MF CF

NE

MIB

VMCMIBAccess VMCMIBExtend

 MA MA

71

The MIBExtender interface provides functionality to process the get, getNext, and

set SNMP management operations, to unregister a MIB group and to close the

connection with the master agent on a manager request basis. The so-called

MIBExtender Engine is mainly the MIBExtender interface implementation.

Once registered, the SNMP agent is capable of recognizing those requests for

these dynamically registered objects and forwards the requests to the appropriated

subagent using its devoted DPI open connection. Eventually, it will receive the

responses and will send them to the management station. This scheme is

illustrated in Figure 4.2.

4.2.2 Mobile Agents accessing the SNMP agent’s MIB

The MIBAccessFacilitator component is a VMCMIBAccess interface

implementation.

Requests coming from mobile agents are processed through a separate blocking

RDPI communication link with the RPDI-enabled SNMP agent. Figure 4.3 shows

what a request process looks like:

72

Figure 4.2 MIBExtender/MIBExtenderHandler Framework

MCE

 MEF

MIBExtenderHandler

DPI Interface

MIBExtender

MIBExtender

Engine

extensible DPI- enabled
SNMP agent

MEF: MIBExtenderFacilitator
MCE: Mobile Code Environment

Resquest/Response
DPI interaction

xMIB

DPI Interface

MIBExtenderHandler

MIBExtender

MIBExtender Engine

xMIB

sMIB

73

Figure 4.3 MIBAccessFacilitator Request Processing

4.3 The MCT – XMS-SNMP agent integrating environment

Figure 4.4 shows the complete integrated environment architecture. The network

element (NE) contains the two components: the XMS-SNMP agent and the MCE

running within a separate Java Virtual Machine (MCE/JVM).

The XMS-SNMP agent is listening for get/getNext/set requests from remote SNMP

manager applications and thus, processes them and sends the replies back via the

SNMP interface. Similarly, the agent is listening for requests from mobile agents

running on the same network element (NE) and wishing to access the XMS-SNMP

agent's MIB; it is capable of processing them and sends the replies back through the

RDPI interface.

 opResponse op (opRequest, community){

 try {
 set up a RDPI connection with the SNMP agent;
 process the opRequest and create the RDPI packet;
 send the RDPI packet to the SNMP agent;
 block waiting for the response;
 strip away the RDPI elements from the results;
 return the results to the caller;

 } catch Exception () { … }

 }

74

Although the XMS-SNMP agent is listening for open/register/unregister/close DPI

requests from mobile agents wishing to extend the MIB, it also originates

(forwards) get/getNext/set requests for MIB extending mobile agents using the DPI

interface.

The MCE/JVM provides SNMP network management capabilities. It configures

the MIBAccessFacilitator (MAF) and the MIBExtendFacilitator (MEF) for MIB

access and MIB extension capabilities respectively.

MIBExtenderHandlers (MEH) handle the two-way DPI communication between

the associated MIB extender and the XMS-SNMP agent. Mobile agents wishing to

access the XMS-SNMP agent's MIB send requests to the MAF.

75

Figure 4.4 The MCT – XMS-SNMP agent Integrated Framework

NE

XMS-SNMP
 agent

MIB Engine

static MIB

RDPI interface DPI Interface

SNMP manager

SNMP interface

 MCE/JVM

 MAF MEF
MEH MEH

MIB Extender
MIB Extender

MA

 MCD

MCM

CF MF SF

xMIB
xMIB

MA

76

4.4 Summary

The MCT - XMS-SNMP agent integrated environment is a framework for network

management applications based on mobile agent technology. For the above

management infrastructure to be feasible and complete in providing the needed

services to network managers, mobile agent management supports should be

provided.

The next chapter proposes a mobile agent management solution in the MCT - XMS-

SNMP agent integrated environment.

 77

Chapter 5 Mobile Agent MIB

5.1 Introduction

This chapter describes the design and implementation of a Management

Information Base (MIB) for managing mobile agents running in a Mobile Code

Toolkit - XMS-SNMP agent integrated management environment.

Doing their management tasks, mobile agents co-operate with each others and with

the SNMP agent, access managed resources and, depending on the situation, they

may decide to visit other NEs. Therefore, they are also network resources with

specific tasks and network manager may want to control and monitor mobile agents

as well.

In order to provide mobile agent management capabilities to network managers in a

MCT- XMS-SNMP agent integrated environment, this thesis defines the structure

and contents of a mobile agent MIB for providing the network manager

applications the management functions of mobile agent location, execution status

report, and control functions to apply to targeted mobile agents.

 78

The Mobile Code Toolkit - XMS-SNMP agent infrastructure suggests that for

managing mobile agents, a MIBExtender implementation interfaces the local

mobile agents visiting the network element and extends the resident XMS-SNMP

agent’s MIB to include the mobile agent MIB using the DPI interface provided by

the MIBExtendFacilitator.

Section 5.2 describes the structure and contents of the mobile agent MIB and

section 5.3 its implementation.

5.2 The Mobile Agent Management MIB

This section describes the structure and contents of the Mobile Code10 Management

Information Base (MCMIB) to monitor the mobile agents running around the

network in an XMS-SNMP agent- MCT integrated environment.

The MCMIB is defined into a MIB group, known as MCMIBTree and comprises 2

MIB subgroups:

• MCMIB: defines the number and the attributes of mobile agents visiting the

system, and

• MHMIB: defines the mobile agent’s migration history.

10 The term mobile code is similar to mobile agent and is used in the context of the MCT implementation.

 79

Figure 5.1 shows the current position of the MCMIBTree group in the OSI

registration tree. The xmsAgentMIB [57] was originally defined to support the

XMS-SNMP agent management MIB group to manage mobile agents registered as

subagents (mobile subagents) of the XMS-SNMP agent.

The following subsections examine each of the MCMIBTree subgroups.

Figure 5.1 Position of the Mobile Agent MIB in the OSI Registration Tree

5.2.1 The MCMIB group

The MCMIB group provides general information (Figure 5.2) about the mobile

agents instantiated in the system. The group includes the object type mcNumber,

iso (1) org (3) dod (6) internet (1) experiment (3) xmsAgentMIB(100)

MCMIB (1)

MHMIB (2)

MCMIBTREE (3)

registerTreeMIB (2)

subagentMIB (1)

 80

which represents the total number of mobile agents resident on the system. In

other words, all the mobile agents instantiated in the system, independent of their

current execution status.

The group also consists of the mcTable. This is a tabular object containing

information about the visiting mobile agents. Each entry in the table has a

mcIndex object, the mcTable index, whose value is an integer in the range of 1

and the current value of mcNumber; it uniquely identifies a mobile agent in the

table.

The object mcId represents the descriptive mobile agent identifier. Its default

format is:

 mobileCodeName[autority]@className

The class full pathname in an MCE, the one that the mobile agent instantiates, can

be retrieved from the mcClassName object. The mcAlias object type provides the

list of alias names of this mobile agent.

mcInfo is the additional information the mobile agent can supply to the

community.

mcType typifies the mobile agent as is in the MCE.

 81

mcInfo represents additional information the mobile agent can provide to the

community.

mcLocation identifies the MobileCodeDaemon where this mobile code is running.

Its format is

hostaddress:tcpPort:udpPort:facPort

where

hostaddress is either the host IP address or its full domain name.

tcpPort is the TCP port the daemon is listening for incoming requests.

udpPort is the UDP port the daemon is listening for incoming requests.

facPort is the TCP port the daemon's communication facilitator(CF) uses.

The location uniquely identifies a daemon in a region

mcStatus represents the current mobile agent’s execution status as defined in the

MCE. Appendix A shows the mobile agent's execution status chart diagram.

The mcMessagingAccess value indicates whether the mobile agent has inter-

mobile agent communication capabilities.

The mcMigratable object provides information about the migration capabilities

the mobile agent has, and the value of the mcVisitedNodes object indicates the

 82

number of MCDs this mobile agent has visited up to the minute. If the mobile

agent has no migration capabilities11, the value of this object will be zero.

mcMgmtOp is the only object in the mcTable entry that has read-write access

permissions. The purpose of this object is to allow a network management station

to control the mobile agent's execution status. This object provides capability to

the manager to start, suspend, resume, stop, and destroy a mobile agent registered

in the system.

5.2.2 The MHMIB group

The MHMIB group provides the information related to the mobile agent’s

migration history.

The MIB group consists of only one tabular object, the mcMigrationHistoryTable.

As shown bellow in Figure 5.3, the mcMigrationHistoryTable is double indexed

by mcIndex and then by mhIndex. The mcIndex value matches that of mcIndex for

one of the entries in the mcTable in the MCMIBGroup.

11 This mobile agent has no mobility capability at all. Actually it is stationary.

 83

Figure 5.2 Mobile Code MIB Group

mcTable (2)

mcEntry (1)

mcNumber (1
)

MCMIB (1)

mcIndex (1)

mcId (2)

mcClassName (3)

mcAlias(4)

mcType (5)

mcInfo (6)

mcLocation (7)

mcStatus (8)

mcMessagingAccess (9
)

mcMigratable (10)

mcVisitedNodes (11)

mcMgmtOp (12)

 84

Figure 5.3 Migration History MIB Group

The table contains an entry for each MCD visited by a migratable mobile agent.

The value of the mcVisitedNodes in mcTable also indicates the number of rows in

the mhMigrationHistoryTable referring to the same mobile agent.

A migratable mobile agent will always have a least one entry in the

mcMigrationHistoryTable and the first of them is, of course, its home MCD.

mhNode specifies the location of the visited mobile agent system. It is a string

with the format:

 //hostadress:tcpPort:udpPort:facPort/nodeId

mcMigrationHistoryTable (1)

mcMigrationHistoryEntry (1
)

mcIndex (1)

mhIndex (2)

MHMIB (2)

mhNode (3)

 85

Figure 5.4 is an example of a specific instance view of these 2 MIB groups that

illustrates the relationship between the 2 tables. In this case, the mobile agent

table has three entries. The first entry corresponds to a non-migratable mobile

agent, but the second and third correspond to migratable ones. Therefore, these

two last entries have one or more related entries in the migration history table.

For example, the second entry of MEF01 corresponds to a migratable mobile

agent, created, instantiated, and now running in MCD identified by ND01; and the

value of mcVisitedNodes of 1 indicates MEF01 has not migrated from its home

MCD.

The third entry of MyTTT shows this mobile agent has visited 5 MCDs. The

MCDs and the order they have been visited can be found in the migration history

table.

 86

Figure 5.4 Instance Views of mcTable and mcMigrationHistoryTable

 eureka.sce.carleton.ca:
 1 MEF01 -1:-1:6666 running no 0

mcId* mcLocation mcStatus mcMigratable mcIndex mcVisitedNodes

 eureka.sce.carleton.ca:
 2 MyMig -1:-1:6666 running yes 1

 mystic.sce.carleton.ca:
 3 MyTTT -1:-1:6666 running yes 5

mcTable

 2 1 //eureka.sce.carleton.ca:-1:-1:6666/ND01

mcIndex mhIndex mhNode

 3 1 //mystic.sce.carleton.ca:-1:-1:6666/ND02

 3 2 //eureka.sce.carleton.ca:-1:-1:6666/ND01

 3 3 //mystic.sce.carleton.ca:-1:-1:6666/ND02

 3 4 //eureka.sce.carleton.ca:-1:-1:6666/ND01

 3 5 //mystic.sce.carleton.ca:-1:-1:6666/ND02

mcMigrationHistoryTable

 * For simplicity, the mcId attribute shows only the mobileCodeName

 87

5.3 The Mobile Agent MIB Implementation

Subsection 5.3.1 presents the MCMIBExtender, a MIBExtender interface

implementation supported by a stationary mobile agent; subsection 5.3.2 presents

the MCMIB and MHMIB group implementations and discusses how the mobile

agent MIB objects can be mapped to the actual MIB variables.

5.3.1 The MCMIBExtender

MCMIBExtender stands for Mobile Code MIB Extender. As indicated, it is a

MIBExtender implementation, whose main function is to interface with the mobile

agents with the purpose of SNMP management, implementing the two MIB

groups, MCMIB and MHMIB presented in section 5.2. The implementation

chosen is a stationary agent that can be installed at the MCD’s startup time.

Figure 5.5 depicts the MCMIBExtender framework in the context of a NE

environment where the MIBExtendFacilitator has been installed in the MCE and

an XMS-SNMP agent local version is running.

When installed and registered by the MCM, MCMIBExtender is registered with

the MIBExtendFacilitator. At this moment, the DPI-enabled MEH is already

associated with the MCMIBExtender, opens the DPI connection with the XMS-

SNMP agent and registers the MCMIBExtender as a subagent of the XMS-SNMP

 88

agent. The MEH enters in a forever loop, waiting for requests coming from the

master agent.

The MEH forwards the request to the MCMIBExtender and, in turn, accesses the

MIB variables in the two MIB groups accordingly. MCMIBGroup and

MHMIBGroup implement the MIBGroup abstract class, which contains the data

and behaviour of a MIB group.

Figure 5.5 MCMIBExtender Framework

 MCE

 MEF

MIBExtenderHandler

DPI Interface

 MCMIBExtender

MCMIB MHMIB

MCMIBExtender

Engine

XMS-SNMP agent

DPI Interface

MEF: MIBExtenderFacilitator
MCE: Mobile Code Environment

Resquest/Response
DPI interaction

 89

Which mobile agents the MCMIBExtender and its two MIB groups are really

interfacing is discussed next.

5.3.1.1 Local Mode Management

The first approach implements a MCMIBExtender interfacing with local mobile

agents, that is, the mobile agents running on the top of the local MCD. Therefore,

a network management system based on the extensible XMS-SNMP agent and the

MCT technology might be configured in such a way that each network element

having an MCE must install the MEF and its local MCMIBExtender and run the

XMS-SNMP agent.

Figure 5.6 displays an example of an integrated MCT- SNMP network

management system. The region consists of three Java-enabled network elements

(NE) and a network management station (NMS). Each NE is running an XMS-

SNMP agent and has created an MCE where an MCD is running on the top of a

separated JVM. ND01, ND02 and ND03 identify the MCDs, respectively. Each

MCE has a single MCMIBExtender interfacing with the local mobile agents

running in the MCE.

SNMP management requests are sent to the specific NE's XMS-SNMP agent.

The problem with this approach is that those NEs participating in the management

system must have sufficient resources in its operating environment to run the

XMS-SNMP agent and a separated JVM for an MCE as described above.

 90

Figure 5.6 Mobile Agent Management in Local Mode

5.3.1.2 Regional Mode Management

To overcome these difficulties, a second approach uses the MCT's region-wide

location service. In this case, only one of the NEs running its MCE must

instantiate the MCMIBExtender and run the extensible XMS-SNMP agent. A

NE

JVM

XMS-SNMP agent

ND01

MCMIBExtender

NE

JVM

XMS-SNMP agent

1.1
1.2 ND02

MCMIBExtender NE

JVM

XMS-SNMP agent

ND03

MCMIBExtender

 : SNMP manager-agent communication
JVM : Java Virtual Machine
NMS : Network Management Station

 91

single mobile agent location directory, the Mediator, will be set up in a

separated JVM and the MCMIBExtender interfaces with the mobile agents

registered in this regional Mediator.

Figure 5.7 displays a configuration example where the regional mode

management approach is chosen.

There are three MCEs, ND01, ND02, and ND03, and the single Mediator, each

running in a separated JVM. At the time of their startup, the MCDs identify the

Mediator as the region-wide location directory. Only ND01 is configured to

register the MCMIBExtender as a subagent of the local XMS-SNMP agent.

Therefore, the ND01's MCMIBExtender is encouraged to interface with all

mobile agents running around all over the region.

Currently a MCMIBExtender can be set up to interface mobile agents running

on the top of a each MCD, or a single MCMIBExtender interfaces all mobile

agents running around a community of MCDs integrated in a region.

 92

Figure 5.7 Mobile Agent Management in Regional Mode

5.3.2 The MCMIBGroup and the MHMIBGroup

The actual data and behavior of a MIB group is encapsulated in the MIBGroup

abstract class. MCMIBGroup and MHMIBGroup both are MIBGroup

NE

 JVM

XMS-SNMP agent

ND01

NE

 JVM

ND02

NE

JVM

ND03

NMS

NE

 JVM

Mediator

MCMIBExtender

NE : Network Element : SNMP manager-agent interaction
JVM: Java Virtual Machine : rmi interaction
 : rmi Mediator interaction

 93

implementations that provide the access functions to the actual mobile agent MIB

variables.

During the initialization phase, MCMIBExtender instantiates both MCMIBGroup

and MHMIBGroup, specifying the management mode: local or regional. If local

management, the local mobile agent's location directory, called

LocalMCDirectory, essentially provides the actual MIB variables that map into

the MCMIBTree definition. In regional management, however, the MIB variables

will be retrieved directly from the regional mobile agent location directory,

known as the Mediator.

To access the actual MIB variables, MCMIBGroup and MHMIBGroup first get a

reference to the local or regional location directory using the getDirectory()

function. The access function retrieves the directory reference from the MCM.

The MIB object mcNumber in MCMIBGroup is a scalar object and has no

correspondent variable in the location directories. Instead, the access function

mcNumber() is provided and computes the object value by counting the number

of mobile agents currently registered in the just-referenced directory.

The MIB objects in the mcTable in MCMIBGroup are tabular objects where each

row in the MIB definition file corresponds to a specific mobile agent in the

location directory. mcIndex is the MIB object which uniquely identifies a

 94

particular mobile agent in the table. The access function getMobileCodeRecord()

uses the value of the mcIndex to locate the corresponding MobileCodeRecord

(MCR) in the referenced directory.

As soon as the MCR is obtained, the attributes can be readily retrieved from the

access function getAttributeValue(). Attributes mcId (2), mcClassName (3),

mcAlias (4), mcType (5), mcInfo (6), mcLocation (7), mcStatus (8),

mcMessagingAccess (9), mcMigratable (10), correspond directly with MCR's

id, className, alias, info, location, status, hasMessagingAccess and migratable

attributes respectively; mcVisitedNodes (11) can be retrieved from the MCR's

history attribute size.

When processing a SNMP set request involving a MIB variable registered by the

subagent, the XMS-SNMP agent – DPI subagent interactions consist of a DPI set-

commit-action packet chain sent from the SNMP agent and received by the

subagent. When a set request chain for a mcMgmtOp (12) MIB object is received,

the command access function action() is the one that does the real management

operation. It gets a reference to the corresponding management interface

(LocalManager or RemoteManager) and uses it to issue the management

operation itself.

As it is shown in Figure 5.3, the MIB objects in the mcMigrationHistoryTable in

the MHMIBGroup are tabular objects and mcIndex and mhIndex identify a row in

 95

the table. For a management request, the access function getHistoryDataAt() will

first locate the mcIndex-th mobile agent in the location directory and, secondly,

will retrieve the mhIndex-th element in its MCR's history field.

Appendix C shows an example of the interaction among components during a

SNMP management request process in a regional mode management scenario.

5.4 Summary

This chapter has focused on mobile agent management in a Mobile Code Toolkit -

XMS-SNMP agent integrated environment. It presented the design and

implementation of a mobile agent management MIB that can be used in an SNMP-

based network management system to control mobile agents running around a

MCT network. Appendix B provides the formal managed object definitions for the

mobile agent MIB.

The MCMIBExtender is the actual mobile agent MIB extender that holds the

attributes and status of mobile agents and responds to the requests from the XMS-

SNMP agent in order to report the execution status of the mobile agents and apply

management commands for starting, suspending, resuming, stopping and

destroying targeted mobile agents.

 96

Chapter 6 Test Design

6.1 Introduction

This chapter focuses on the development of test strategies and cases to demonstrate

the efficiency and the robustness of the solutions presented in this research work.

The Mobile Code Toolkit – XMS-SNMP agent integrated framework enables a

network management model based on mobile agent, distributing management

functions through the delegation of specific management tasks into mobile agents

that are launched to the network as close the managed objects as possible and

interact with the resident SNMP agent. The current implementation uses the DPI

and Reverse DPI protocols in order to provide mobile management applications

with SNMP management capabilities and to enhance the efficiency of this mobile

agent – SNMP agent interaction. The RDPI protocol is used instead of the SNMP

protocol by mobile management applications arriving to the same network element

wanting to access the XMS-SNMP agent’s MIB variables. Although both protocols

are analytically compared in [36] and [55], it also important to measure how much

faster the RDPI protocol is to demonstrate the benefits of using it in a local

communication scenario.

 97

For the purpose of managing mobile agents, the Mobile Code Toolkit has been

extended with a mobile agent MIB that can interface mobile agents visiting the

local MCE. One of the advantages of the dual VMC architecture providing separate

SNMP management capabilities to mobile agents is that if there is no resident

XMS-SNMP agent, it is still possible to configure the MCEs in such a way the

mobile agent MIB interfaces all mobile agents visiting a region.

Section 6.2 describes the test strategy and cases employed to measure the RDPI and

the SNMP protocols’ response times. Section 6.3 provides the test strategy and

cases to demonstrate how network management application can manage mobile

agents in a region domain employing the MCT – XMS-SNMP agent integrated

environment.

6.2 RDPI and SNMP Protocol Comparison Test

This test measures the response times out the RDPI and SNMP requests sent to the

extensible SNMP agent, being both the XMS-SNMP agent and the management

applications executing in the same network workstation.

98

6.2.1 Test Strategy

6.2.1.1 Test Configuration

Figure 6.1 shows the test configuration. The XMS-SNMP agent, the RDPI and

SNMP management tools are all resident in eureka.

eureka is a 75 MHz Sun SPARCstation 5, running the SunOS 5.7 operating

system and 128 MB of main memory. The XMS-SNMP agent is a modified

version of UCD-SNMP agent, written in C and compiled on SunOS 5.7. The

XMS-SNMP agent receives SNMP, DPI and RDPI messages from the non well-

known ports 1061, 1064 and 1065 respectively.

Figure 6.1 Test Configuration

response
get
getnext

response

get
getnext

 XMS-SNMP agent 1065

1064

1061

RDPI tools

SNMP tools eureka

99

6.2.1.2 The RDPI Manager tools

The RDPIGet is a modified command line application written in Java that

measure the time elapsed between a RDPI request packet is created, sent to the

XMS-SNMP agent and the corresponding response packet is received.

6.2.1.3 The SNMP Manager tool.

The University of Quebec at Montreal (UQAM)’s management tools are a set of

graphical applications written in Java and its Requester has been modified to

measure the time elapsed between a SNMP request packet is being BER encoded,

sent to the XMS-SNMP agent and the corresponding response packet have been

received and decoded.

6.2.2 Test Scenario

In order to obtain more consistent results, the number of replications and the

length of the request’s variable binding list the management tools sent to the

XMS-SNMP agent are determined at run-time. Timestamps were taken in every

replication, each time recording the response time and finally calculating the

average. Both tools calculate and print out the average response time as result.

100

6.2.3 Test cases

The management tools are executed repeatedly, polling the same MIB variables

over the same number of replications and sending their respective final results to a

text file.

The XMS-SNMP agent is polled repeatedly alternating between the RDPI and the

SNMP management tools 5 times each (10 repetitions), over 100 and 500

replications, requesting the value of 1 and 3 MIB variables respectively.

Test cases are summarized in Table 6.1.

Test Case 1 2 3 4

Replications 100 500 100 500

Var Bind List Length 1 1 3 3

Table 6.1. Test Cases

The experiment was conducted and the results are shown in Table 6.2. The RDPI

request average response time is, in all these test cases, approximately 2-3 times

faster than the SNMP's.

Test Case 1 2 3 4

SNMP 15.42 14.06 16.22 15.79

RDPI 5.91 4.84 7.67 6.52

Table 6.2. Average Response Times (msecs)

101

These tables show two important results. First, the RDPI protocol not only has a

message overhead (meaning the extra octets needed for encoding and decoding

purposes) smaller than the SNMP's but also the XMS-SNMP agent can decode an

RDPI message faster than an SNMP message [55]. Second, the bigger the size of

the varbind list involved in a management operation the smaller the performance

overhead required for the RDPI protocol to process requests.

6.3 Mobile Agent MIB Test

This section demonstrates how a network manager can manage mobile agents

running in an Mobile Code Toolkit - XMS-SNMP agent integrated environment.

6.3.1 Test Strategy

6.3.1.1 Test Configuration

For this purpose, the chosen network management system comprises a region of

three Java-enabled networks management stations, sunspot.sce.carleton.ca, inm-

057178.sce.carleton.ca and inm-057179.sce.carleton.ca. Figure 6.2 displays the

network management system configuration: sunspot is a SunOS Release 5.7

workstation running an XMS-SNMP agent daemon and there is a MCE running a

MCD on a separated JVM, identified as ND01. inm-057178 and inm-057179 are

Windows NT 4.0 workstations running ND02 and ND03 MCDs respectively.

These MCDs register with the Mediator, the regional database, which is also

running on a separated JVM on inm-057178.

102

6.3.2 Test Scenarios

There are two management scenarios, the local mode management scenario where

the MCMIBExtender configured on ND01, interfaces the mobile agents visiting the

local host. The regional mode management scenario is similar to the previous one

but the MCMIBExtender interfaces all mobile agents running around the registered

region.

6.3.3 Test Cases

6.3.3.1 Local Mode Management Test Case

In the local mode management scenario, the network manager application queries

the XMS-SNMP agent and will be able to manage the mobile agents visiting the

local MCE. In this case, the ND01 is configured with a MIBExtendFacilitator and a

MCMIBExtender, which extends the XMS-SNMP agent's MIB, interfacing the

mobile agents visiting sunspot's MCE.

Appendix D shows the complete sequence for this test case.

103

Figure 6.2 Network Management System Configuration

6.3.3.2 Regional Mode Management Test Case

In a regional management scenario, the network manager station queries the XMS-

SNMP agent and will be able to manage all mobile agents running in the region. In

this case, the ND01 is configured with a MIBExtendFacilitator and a

MCMIBExtender, which extends the XMS-SNMP agent's MIB, interfacing the

sunspot.sce.carleton.ca

 JVM

ND01

inm-057178.sce.carleton.ca

 JVM

ND02

inm-057179.sce.carleton.ca

JVM

ND03

 JVM

JVM

Mediator

 : migration path

 : rmi interaction

XMS-SNMPP agent

104

mobile agents visiting the three MCDs currently registered with the Mediator at

sunspot, inm-057178 and inm-057179 respectively. It also requires the three netlet

daemons configure the RemoteManager component to accept management

operations coming from the remote network manager application.

Appendix E shows the complete sequence for this test case.

6.4 Summary

The Mobile Agent MIB has been designed for managing mobile agents residing in

a MCT network and provides network managers with information about their

identity, classification, current location, operational status and their migration

history.

From the implementation point of view, the MCE MIB extension facilitator is

provided in the way of a stationary VirtualManagedComponent, known as the

MIBExtendFacilitator. On the other side, the Mobile Agent MIB is implemented as

another stationary mobile agent, the MIBExtender that can be configured local or

regional. If regional, the MCMIBExtender interfaces all mobile agents registered in

the Mediator and the network manager can issue management operations to start,

suspend, resume, stop and destroy mobile agents all over the region.

 105

Chapter 7 Conclusions

7.1 Thesis Summary

The basic idea of the mobile agent – based network management systems is to

distribute the management functionality throughout the network, to manage rapid

changes and the scalability of today's complex and heterogeneous networks.

This research work has focused on the integration of the mobile agent technology

with the SNMP network management framework. It has extended the Perpetuum

Mobile Procura Project’s Mobile Code Toolkit with SNMP management

capabilities to integrate with the extensible XMS-SNMP agent. Mobile agents

arriving at the same network element of the SNMP agent can request SNMP MIB

variables using the RDPI protocol as the means that governs the local

communication between mobile agents and the SNMP agent. Mobile agents

arriving at the same network elements of the SNMP agent can extend the SNMP

MIB using a DPI-enabled communication channel that handle all the

communication between the MIB extender and the SNMP agent.

The efficiency of using the Reverse Distributed Protocol Interface (RDPI) in order

to enhance the mobile agent – SNMP agent interaction is also demonstrated. The

average response times of management operations using RDPI and SNMP requests

sent to the XMS-SNMP agent in a local environment are measured, and the results

indicated that RDPI is about three times faster than SNMP.

 106

Finally, the result is also the design and implementation of a Management

Information Base (MIB) to allow network management applications to monitor,

control and act on mobile agent behavior in a Mobile Code Toolkit - XMS-SNMP

agent integrated environment. The Mobile Agent MIB provides network

management applications with general information about the mobile agents; it holds

information like identity, class, type, current location, execution state, and the

migration history of mobile agents. The MIB also provides network managers

applications with control functions for starting, suspending, resuming, stopping and

destroying targeted mobile agents.

7.2 Future Work

During this research work, a number of directions have been identified for future

work. So far, only a limited information about mobile agents is provided but,

particularly in the provisioning of management support based on mobile agents, it

would be desirable to develop a mobile agent management model which allow

managers to administrate the way and order mobile agents need and access

resources of the network elements they are visiting. Therefore managers can

dynamically influence in the life cycle of mobile agents anticipating and avoiding

or reducing significantly problems like security violations, congestion, deadlock,

system breakdown, and etceteras.

 107

Other research direction might include the extension of management capabilities

not only to mobile agents but also to Mobile Code Environments participating in a

regional domain. The management system supports monitoring and controlling the

list of agents residing in a particular MCE, adaptive configuration of environment

preferences, monitoring and control of NE's resources utilization.

 108

References

[1] Abeck, S., Köppel, A., Seitz, J., A Management Architecture for Multi-Agent

Systems, Proceedings of the IEEE Third International Workshop on System

Management, 1998. Pages: 133-138.

[2] Apache XML Project, Xerces Java Parser, [ON LINE] URL:

http://xml.apache.org/xerces-j/index.html.

[3] Baldi, M., Picco, G.P., Evaluating the Tradeoffs of Mobile Code Design Paradigms

in Network Management Applications, Proceeding of the IEEE 1998 International

Conference on Software Engineering, 1998.Pages: 146-155.

[4] Bieszczad, A. , Pagurek, B., Network Management Application-Oriented Taxonomy

of Mobile Code, Proceedings of the IEEE/IFIP Network Operations and

Management Symposium, NOMS 98, IEEE, Volume: 2, 1998. Pages: 659-669

[ON LINE] URL: http://www.sce.carleton.ca/netmanage/publications.html.

[5] Bieszczad, A., Pagurek, B., Towards Plug-and-Play Networks with Mobile Code,

Proceedings of the International Conference for Computer Communications

ICCC’97, November 19-21, 1997.

[ON LINE] URL: http://www.sce.carleton.ca/netmanage/publications.html.

[6] Bieszczad, A.,White, T., Pagurek, B, Mobile Agents for Network Management,

IEEE Communication Surveys, September, 1998.

[ON LINE] URL: http://www.sce.carleton.ca/netmanage/publications.html

109

[7] Case, J., McCloghrie, K., Waldbusser, S., Manager-To-Manager Management

Information Base, RFC 1451, April 1993.

[8] Finin, T., Labrou, Y., Peng, Y., Mobile Agents Can Benefit from Standards Efforts

on Interagent Communication, IEEE Communications Magazine, July 1998.

Volume: 36, Issue: 7, Pages: 50-56.

[9] FIPA, FIPA'97 Specifications,

[ON LINE] URL: http://www.fipa.org/spec/fipa97.html.

[10] FIPA, FIPA'98 Specifications,

[ON LINE] URL: http://www.fipa.org/spec/fipa98.html.

[11] FIPA, Foundation for Intelligent Physical Agents,

[ON LINE] URL: http://www.fipa.org/

[12] Goldszmidt, G., Yemini, Y., Delegated Agents for Network Management, IEEE

Communication Magazine, Volume: 36, Issue: 3, March 1998.

[13] Goldszmidt, G., Yemini, Y., Distributed Management by Delegation, Proceedings

of the 15th International Conference on Distributed Computing Systems, 1995.

Pages: 333-340.

[14] Green Shaw, Hurst L., Nangle, B., Cunningham, P., Somers, F., Evans, R.,

Software Agents: A review,

[ON LINE] URL: http://www.cs.tcd.ie/research_groups/aig/iag/toplevel2.html

[15] Gschwind, T., Feridun, M., Pleisch, S., ADK-Building Mobile Agents for Networks

and Systems Management from Reusable Components, Proceedings of the First

International Symposium on Agent Systems and Applications Third International

Symposium on Mobile Agents., 1998.

110

[16] IBM, Aglets Specification 1.1 Draft ,

[ON LINE] URL: http://www.trl.ibm.co.jp/aglets/spec11.html

[17] IETF, DIStributed MANanagement Working Group,

[ON LINE] URL: http://www.ietf.org/html.charters/disman-charter.html.

[18] IKV++, Grasshopper, The Agent Platform,

[ON LINE] URL: http://www.ikv.de/products/grasshopper/.

[19] Jasmin Project, A Script MIB implementation.

[ON LINE] URL: http://www.ibr.cs.tu-bs.de/projects/jasmin/.

[20] JIDM, Joint Inter-Domain Management, [ON LINE] URL: http://www.jidm.org/.

[21] Knight, G., Hazemi, R., Mobile Agent based management in the INSERT Project,

Journal of Network and Systems Management, Vol. 7, No.3, 1999.

[22] Levi, D., Introduction to the Script MIB, The Simple Times, Vol. 7, Number 2,

November 1999.

[ON LINE] URL: http://www.simple-times.org/pub/simple-times/issues/7-

2.html#applications.

[23] Levi, D., Schönwälder, J., Definition of Management Objects for Scheduling

Management Operations, RFC 2591, 1999.

[ON LINE] URL: http://www.ietf.org/rfc/rfc2591.txt?number=2591

[24] Levi, D., Schönwälder, J., Definition of Management Objects for the Delegation of

Management Scripts, RFC 2592, 1999.

[ON LINE] URL: http://www.ietf.org/rfc/rfc2592.txt?number=2592

111

[25] Lopes, R.P., Oliveira, J.L., On the Use of Mobility in Distributed Network

Management, Proceedings of the IEEE 33th Hawaii International Conference on

System Sciences, 1998. Volume: Abstract, 2000. Pages: 47.

[26] Luchuck, A., Schedule MIB, The Simple Times, Vol. 7, Number 2, November

1999.

[ON LINE] URL: http://www.simple-times.org/pub/simple-times/issues/7-

2.html#introduction.

[27] Luderer, G., Ku, H., Subbiah, B., Narayanan, A., Network Management Agents

Supported by a Java Environment, Submitted to ISINM’97.

[28] Magedanz, T., Agent Cluster Baseline Document, version 0.2, Advanced

Communications Technologies and Services.

[ON LINE] URL: http://olympus.algo.com.gr/acts/dolphin/AC-baseline.htm.

[29] McManus, É., Script MIB Implementation Experience, The Simple Times, Vol. 7,

Number 2, November 1999.

[ON LINE] URL: http://www.simple-times.org/pub/simple-times/issues/7-

2.html#introduction.

[30] Meyer, K., Erlinger, M., Betser, J., Sunshine, C., Decentralizing Control and

Intelligence in Network Management, Proceedings of the Fourth International

Symposium on Integrated Network Management, 1995.

[31] Nwana, H.S, Software Agents: An Overview, Cambridge University Press, 1996.

[ON LINE] URL:

http://www.sce.carleton.ca/netmanage/docs/AgentsOverview/ao.html.

[32] Nortel Networks, FIPA-OS.

112

[ON LINE] URL: http://www.nortelnetworks.com/fipa-os/.

[33] ObjectSpace, Voyager ORB, [ON LINE] URL: http//www.objectspace.com/.

[34] OMG, Common Object Request Broker Architecture,

[ON LINE] URL: http://www.corba.org/.

[35] OMG, Object Management Group,

[ON LINE] URL: http://www.omg.org/.

[36] OMG, MASIF- RTF Results, orbos/98-03-09.

[ON LINE] URL: ftp://ftp.omg.org/pub/docs/orbos/98-03-09.pdf

[37] Pagurek, B., Wang, Y., White, T., Integration of Mobile Agents with SNMP: How

and Why, Network Operations and Management Symposium, 2000, NOMS ‘00,

IEEE/IFIP, 2000. Pages: 609-622.

[ON LINE] URL: http://www.sce.carleton.ca/netmanage/publications.html

[38] Park, J., Implementation of SNMP Agent by Inferno.

[ON LINE] URL: http://www.lucent-

inferno.com/Pages/Developers/Documentation/White_Papers/snmp.html.

[39] Pavlou, G., Using Distributed Object Technologies in Telecommunication Network

Management, IEEE Journal on Selected Areas in Communications, Vol.18, No. 5,

May 2000.

[40] Perpetuum Mobile Procura Project,

[ON LINE] URL: http://www.sce.carleton.ca/netmanage/perpetuum.shtml

[41] Pinheiro, R., Poylisher, A., Caldwell, H., Mobile Agents for Aggregation Network

Management Data, Proceedings of the IEEE Third International Symposium on

113

Agent Systems and Applications and Third International Symposium on Mobile

Agents, 1999. Pages: 130-140.

[42] PTS, Voyager ORB,

[ON LINE] URL: http://www.pts.com/.

[43] Schönwälder, J., Network Management by Delegation from Research Prototypes

Towards Standards, Proceedings JENC8.

[44] Schramm, C., Bieszczad, A. and Pagurek, B., Application-Oriented Network

Modeling with Mobile Agents, Proceedings of the IEEE/IFIP Network Operations

and Management Symposium NOMS’98, New Orleans, Louisiana, February 1998.

IEEE, Volume: 2, 1998. Pages: 696-700.

[45] Silva, L.M., Soares, G., Martins, P., Batista, V., Santos, L., The Performance of

Mobile Agent Platforms, Proceedings of the IEEE First International Symposium

on Agent Systems and Applications Third International Symposium on Mobile

Agents, IEEE 1998. Pages: 270-271.

[46] Simões, P., Moura, L., Boavida, F., Integrating SNMP into Mobile Agent

Infrastructure, DSOM, 1999.

[47] Simões, P, Reis, R., Silva, L.M., Boavida, F., Enabling Mobile Agent Technology

for Legacy Network Management Frameworks, SoftComm’99.

[48] SNMP Research International, EMANATE The Enhanced MANagement Agent

Through Extensions,

[ON LINE] URL: http://www.snmp.com/products/emanate.html.

[49] Staab, S., Erdman, M., Maedche, A., Decker, S., An Extensible Approach for

Modeling Ontologies in RDF(S).

114

[ON LINE] URL: http://www.aifb.uni-karlsruhe.de/WBS.

[50] Stallings, W., SNMP, SNMPv2, SNMPv3, RMON 1 and 2, Third Ed., Addison-

Wesley, 1999.

[51] Strauß, F., Script MIB Performance Analysis, The Simple Times, Vol. 7, Number

2, November 1999.

[52] Sun Microsystems, Java Management eXtensions,

[ON LINE] URL: http://java.sun.com/products/JavaManagement/.

[53] Susilo, G., Bieszczad, A. and Pagurek, B., Infrastructure for Advanced Network

Management based on Mobile Code, Proceedings of the IEEE/IFIP Network

Operations and Management Symposium NOMS’98, 1998.

[ON LINE] URL: http://www.sce.carleton.ca/netmanage/publications.html.

[54] UCD, UCD-SNMP Agent,

[ON LINE] URL: http://ucd-snmp.ucdavis.edu/.

[55] UMBC, Specification of the KQML agent-communication language

[ON LINE] URL: http://www.cs.umbc.edu/kqml/kqmlspec/spec.html.

[56] Waldbusser, S., Remote Network Monitoring Management Information Base, RFC

1271, November 1991.

[ON LINE] URL: http://www.ietf.org/rfc/rfc1271.txt?number=1271.

[57] Wang, Y., Integration of Mobile Agent Environment with Legacy SNMP, M.Eng.

Thesis, Dept. Systems and Computer Engineering, Carleton University, Ottawa,

Canada, August 1998.

[58] White T., Pagurek B., and Bieszczad A., Network Modeling For Management

Applications Using Intelligent Mobile Agents, accepted for publication in a special

115

issue on Mobile Agents of the Journal of Network and Systems Management to be

published in September, 1999.

[ON LINE] URL: http://www.sce.carleton.ca/netmanage/publications.html.

[59] Wijnen B., Carpenter G., Curran K., Sehgal A., Waters G., The SNMP Distributed

Protocol Interface, RFC 1592, March 1994

[ON LINE] URL: http://www.ietf.org/rfc/rfc1592.txt?number=1592

[60] World Wide Web Consortium, Resource Descriptor Framework (RDF) Schema

Specification 1.0,

[ON LINE] URL: http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

[61] World Wide Web Consortium, SiRPAC – Simple RDF Parser and Compiler,

[ON LINE] URL: http://www.w3.org/RDF/Implementations/SiRPAC/.

[62] Yemini, Y., Goldzmidt, G., Yemini, S., Network Management by Delegation,

Proceeding of the Second International Symposium on Integrated Network

Management, 1991.Pages: 95-107

 116

Appendix A

Mobile Code's Execution Status Chart Diagram

Figure A.1 shows the mobile code's execution status chart diagram in the MCT

environment.

Figure A.1 Mobile Code Status Transition Graph

The MCM declares the mobile code's execution status as UNKOWN during the time

elapsed between MCM instantiates the mobile code and issues the start command to put

the mobile code to run. As soon as the mobile code is started, its status changes to

RUNNING.

unknown

communicating

migrating migrated

suspended stopped

start

suspend resume
stop

send, receive

migrate
running

117

Meanwhile running, a mobile code can receive multiples suspend/resume command pairs

and its status will switch between SUSPENDED and the RUNNING status. The MCM

temporarily changes the mobile code's execution status if the mobile code is sending or

receiving messages to COMMUNICATING. At the point in time when the

communication finishes, its execution status returns back to RUNNING.

The MCM registers the mobile code as MIGRATING when the mobile code is to migrate.

If the migration process is successful, the execution status will evolve to MIGRATED

and eventually the mobile code will be destroyed. Only a Migratable mobile code can

enter in the MIGRATING status; that means, a stationary one will never turn to this status.

The MCM can stop the mobile code execution. Once a mobile code is STOPPED, there is

no way to return back the mobile code's execution status but destroy it.

 118

Appendix B

Managed Objects Definitions for Mobile Code MIB

-- Mobile Code Management MIB Definition

MC-MIB DEFINITIONS ::= BEGIN

IMPORTS

 OBJECT-TYPE

 FROM RFC1212

 IpAddress, TimeTicks

 FROM RFC1155

 DisplayString

 FROM RFC1213-MIB

xmsAgentMIB OBJECT-IDENTIFIER ::= {1 3 6 1 3 100}

-- subagentMIB OBJECT-IDENTIFIER ::= {xmsAgentMIB 1}

--regTreeMIB OBJECT-IDENTIFIER::= {xmsAgentMIB 2}

mcMIBTree OBJECT-IDENTIFIER ::= {xmsAgentMIB 3}

119

mcMIB OBJECT-IDENTIFIER ::= {mcMIBTree 1}

mhMIB OBJECT-IDENTIFIER ::= {mcMIBTree 2}

-- mcMIBTree groups

--mcMIB group

-- This MIB group defines the number and the list of mobile codes entries

-- for the mobile codes running in the system.

-- The system scope could be a local mobile code system (a Mobile Code Daemon) or

-- a mobile code region (a Mediator).

mcNumber OBJECT-TYPE

 SYNTAX INTEGER (0..255)

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "The number of mobile code currently running in the system"

 ::= {mcMIB 1}

mcTable OBJECT-TYPE

 SYNTAX SEQUENCE OF MCEntry

 ACCESS not-accesible

 STATUS mandatory

120

 DESCRIPTION

 " A list of mobile code entries. The number of entries is given

 by the value of mcNumber"

 ::= {mcMIB 2}

mcEntry OBJECT-TYPE

 SYNTAX MCEntry

 ACCESS not-accesible

 STATUS mandatory

 DESCRIPTION

 "A mcEntry contains objects related to the attributes of mobile codes"

 INDEX {mcIndex}

 ::= {mcTable 1}

MCEntry ::= SEQUENCE {

 mcIndex

 INTEGER,

mcId

 DisplayString(SIZE(0..80)),

mcClassName

 DisplayString(SIZE(0..80)),

mcAlias

 DisplayString(SIZE(0..80)),

121

mcTyps

 DisplayString(SIZE(0..80)),

mcInfo

 DisplayString(SIZE(0..80)),

mcLocation

 DisplayString(SIZE(0..80)),

mcStatus

 INTEGER,

mcMessagingAccess

 INTEGER,

mcMigratable

 INTEGER,

mcVisitedNodes

 INTEGER,

mcMgmtOp

 INTEGER

}

mcIndex OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

122

 "A unique value identifying the mobile code in the mcTable.

 It ranges between 0 and the value of mcNumber."

 ::= {mcEntry 1}

mcId OBJECT-TYPE

 SYNTAX DisplayString(SIZE(0..80))

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "The mobile code identifier, as is in a MCD.

 It is a unique value within the scope of the region.

 Its default format is name[authority]@className."

 ::= {mcEntry 2}

mcClassName OBJECT-TYPE

 SYNTAX DisplayString(SIZE(0..80))

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "The fullpath class name this mobile code instantiates.

 For instance, mct.mcmgmt.MIBExtender ".

 ::= {mcEntry 3}

mcAlias OBJECT-TYPE

123

 SYNTAX DisplayString(SIZE(0..80))

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "The list of alias names this mobile code is known in the MCTcontext".

 ::= {mcEntry 4}

mcType OBJECT-TYPE

 SYNTAX DisplayString(SIZE(0..80))

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "The mobile code' type as defined in the MCT context.

 For instance, Mobile Code, VirtualManagedComponent, NETLET, EXLET, etc.".

 ::= {mcEntry 5}

mcInfo OBJECT-TYPE

 SYNTAX DisplayString(SIZE(0..80))

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "Additional information the mobile code can provide to the community".

 ::= {mcEntry 6}

124

mcLocation OBJECT-TYPE

 SYNTAX DisplayString(SIZE(0..80))

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "Identifies the MobileCodeDaemon where this mobile code is running.

 Its format is hostaddress:tcpPort:udpPort:facPort

 hostaddress could be the host IP address or its full domain name.

 tcpPort is the TCP port the daemon is listening for incoming requests.

 udpPort is the UDP port the daemon is listening for incoming requests.

 facPort is the TCP port the daemon's communication facilitator(CF) uses.

 The location uniquely identifies a daemon in a region".

 ::= {mcEntry 7}

mcStatus OBJECT-TYPE

 SYNTAX INTEGER {

 UNKNOWN (0),

 RUNNING (1),

 SUSPENDED (2),

 MIGRATING (3),

 MIGRATED (4),

 COMMUNICATING (5),

125

 STOPPED (6)

 }

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "The mobile code execution status in the MCD context".

 ::= {mcEntry 8}

mcMessagingAccess OBJECT-TYPE

 SYNTAX INTEGER {

 YES (0),

 NO (1)

 }

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "Whether or not the mobile code is a communicating

 mobile code in the MCD context".

 ::= {mcEntry 9}

mcMigratable OBJECT-TYPE

 SYNTAX INTEGER {

 YES (0),

126

 NO (1)

 }

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "Whether or not the mobile code is a migratable mobile code".

 ::= {mcEntry 10}

mcVisitedNodes OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "Number of nodes this mobile code has visited during its life cycle.

 It should be zero for non-migratable mobile codes and it should be at least 1 for

 migratable".

 ::= {mcEntry 11}

mcMgmtOp OBJECT-TYPE

 SYNTAX INTEGER {

 START(0),

 SUSPEND (1),

 RESUME (2),

127

 STOP(3),

 DESTROY(4)

 }

 ACCESS read-write

 STATUS mandatory

 DESCRIPTION

 "Set to one of the possible management operation a mobile code can

 accept if implements the Callback interface".

 ::= {mcEntry 12}

-- mhMIB group

-- This MIB group defines the migration history of these mobile codes running in the

-- system.

-- The system scope could be a local mobile code system (a Mobile Code Daemon)or

-- a mobile code region (a Mediator).

mcMigrationHistoryTable OBJECT-TYPE

 SYNTAX SEQUENCE OF MCMigrationHistoryEntry

 ACCESS not-accesible

 STATUS mandatory

 DESCRIPTION

 "A list of the mobile codes visited nodes."

 ::= {mhMIB 1}

128

mcMigrationHistoryEntry OBJECT-TYPE

 SYNTAX MCMigrationHistoryEntry

 ACCESS not-accesible

 STATUS mandatory

 DESCRIPTION

 "Objects related to the attributes of a mobile code's visited node.

 An entry in the table is uniquely identified by two attributes: the mobile code

 index, corresponding the index in the mcTable and the migration history index"

 INDEX { mcIndex, mhIndex}

 ::= {mcMigrationHistoryTable 1}

MCMigrationHistoryEntry ::= SEQUENCE {

mcIndex

 INTEGER,

mhIndex

 INTEGER,

mhLocation

 DisplayString(SIZE(0..80))

}

mcIndex OBJECT-TYPE

 SYNTAX INTEGER

129

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "A unique value identifying the mobile code in the mcTable.

 It ranges between 0 and the value of mcNumber."

 ::= {mcMigrationHistoryEntry 1}

mhIndex OBJECT-TYPE

 SYNTAX INTEGER

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "A unique number indentifying the visited node in a mobile code migration

 history.

 mhIndex is part of the mcMigrationHistoryEntry index"

 ::= { mcMigrationHistoryEntry 2 }

mhNode OBJECT-TYPE

 SYNTAX DisplayString(SIZE(0..80))

 ACCESS read-only

 STATUS mandatory

 DESCRIPTION

 "mhNode is the MobileCodeDaemon location this mobile code has visited or are

130

 visiting.

 "The format uniquely identifies a visited node in a region.

 hostaddress:tcpPort:udpPort:facPort

 hostaddress could be the host IP address or its full domain name.

 tcpPort is the TCP port the daemon is listening for incoming requests.

 udpPort is the UDP port the daemon is listening for incoming requests.

 facPort is the TCP port the daemon's communication facilitator(CF) uses."

 ::= { mcMigrationHistoryEntry 3 }

 131

Appendix C

Management Request

The figure bellow displays an example of the interaction among components when an

SNMP manager issues a set request in a regional management scenario:

1. The SNMP manager issues an SNMP set request to suspend the MC21 mobile code

running on the remote MCD02.

2. Then, the XMS-SNMP agent forward the request, using its DPI interface, to the

MIBExtenderHandler through wich the MCMIBExtender is regististered.

3. The MCMIBExtender issues an RMI request to the Mediator to get the up-to-date

version of the regional mobile code database.

4. The MCMIBExtender receives the copy and then, it locates where, in the region, the

specified mobile code is currently running and whether this remote daemon accepts

remote management operation on its mobile codes.

5. If that's the case, it sends the management operation to the Remote Manager.

6. As soon as the Remote Manager receives the request, it forwards such request to the

local MCM.

132

Manager

XMS-SNMP agent

DPI interface

MIBExtenderHandle
r

MCMIBExtender MCMIB

Regional Mediator

LocalMCDirectory MediatorListener Remote Manager

MCM

MIB

1 12

2 11

3 4

5 10
8.1.1

6
9 8.1 8.2

MCD02

 MEF

SNMP

DPI

RMI

MC21

7

MCD01

133

7. Then, the MCM calls the corresponding method on the corresponding mobile code.

8. A change in the execution mobile code status is broadcasted by the MCM's event

dispatcher to all the interested parts.

9. And a response is sent back to the local RemoteManager.

10. The MCMIBExtender receives the results from the RemoteManager and,

11. It sends the rsponse back to the XMS-SNMP agent via the DPI interface.

12. Eventually, the manager gets the results and he(she) could check up on the execution

status of the corresponding mobile code.

 134

Appendix D

Local Mobile Agent MIB Test

This appendix also serves as a guide for the use of the MCT- XMS-SNMP agent

integrated environment. It covers the MCE configuration and startup with a local

mobile agent MIB.

The details of the XMS-SNMP agent configuration is not covered in this appendix

instead, it can be found in [55].

Starting up the Mediator and the ND02 netlet on inm-057178

On inm-057178, the MCT is installed on the E:\mctoolkit directory.

1. Running the NT rmiregistry. Click on the ntreg.bat file from the NT Explorer.

ECHO OFF
REM Create a MCToolkit Environment on NT
REM Phase 1: Run nt rmiregistry
ECHO ON

set jdk=E:\JBuilder3\java
set PATH=%jdk%\bin;

REM PC20000513 - Run the NT rmiregistry process
set CLASSPATH=
%jdk%\bin\rmiregistry

135

2. Running the Mediator in a separated JVM. Click on the ntmediator.bat file

from the NT Explorer.

3. Running the ND02 netlet daemon. Click on the ntnd02.bat file from the NT

Explorer.

ECHO OFF
REM Create a MCToolkit Environment on NT
REM Phase 2: Run the NT RMINetletDaemon
ECHO ON

set jdk=E:\JBuilder3\java
set PATH=%jdk%\bin;
set mctoolkit=E:\mctoolkit

REM PC20000513 - Run Mobile Code Daemon : nd02
java mct.RMINetletDaemon
%mctoolkit%\mct\configuration\ntnd02.properties

ECHO OFF
REM Create a MCToolkit Environment on NT
REM Run the Regional Database on NT
ECHO ON

set jdk=E:\JBuilder3\java
set PATH=%jdk%\bin;
set mctoolkit=E:\mctoolkit

REM PC20000513 - Run regional Database: RemoteMediator
java mct.mediator.RemoteMediator
%mctoolkit%\mct\configuration\dir.properties

136

Starting up the XMS-SNMP agent and ND01 netlet on sunspot.

1. Running the XMS-SNMP agent daemon. Click on snmpdsh tcsh script from

the File Manager window.

2. Running the ND01 netlet daemon and the client application. Click on the

lsunspot tcsh script. It launches the rmiregistry to run in the background, the

ND01 netlet daemon, and finally the client application to dynamically inject

mobile agents into the MCE.

#!/bin/tcsh

set jdk=/usr/local/jdk1.2
set mctoolkit=/home/patricia/mctoolkit
setenv PATH $jdk/bin:$PATH
setenv CLASSPATH .:/$jdk/lib/tools.jar:$mctoolkit/

PC19991202 - Run the sparc rmiregistry process
rmiregistry &

PC19991202 - Create a Mobile Code Region : Phase 2
this c-shell script runs Mobile Code Daemons : nd01
java mct.RMINetletDaemon
$mctoolkit/mct/configuration/lsunspot.properties &

PC19991202 - Runs the client application to inject mobile code:
WinMCTRMIClient
java mct.clients.WinMCTRMIClient
$mctoolkit/mct/configuration/client01.properties

#/bin/tcsh

#PC19991220 – Run the xms-snmp agent daemon

~patricia/version-sept98/xms-snmp-sept98/agent /snmpd -f -d -a -q
-p 1061 -l ~patricia/test/snmpd/snmpd.log &

137

The lsunspot.properties file states the default next hop in the migration path,

configures the MIB extension facility for mobile agents wishing to act as XMS-

SNMP subagents, the MIBExtendFacilitator identified as MEF01. Finally,

configure the MCMIBExtender identified as MCMIB01 and the Local Manager,

LMGR01.

netletdaemon.id=ND01
netletdaemon.console=true
netletdaemon.console.display.errors=true
netletdaemon.console.display.warnings=true
netletdaemon.console.display.messages=true
netletdaemon.console.display.debug=false
netletdaemon.console.display.information=true
netletdaemon.console.display.application=false
netletdaemon.default.protocol=rmi
netletdaemon.facilitator.enable=true
netletdaemon.facilitator.mobilecode=CF01@mct.mediator.CommunicationFacilitator
netletdaemon.facilitator.properties=/home/patricia/mctoolkit/mct/configuration/fac01.properties
netletdaemon.migrator.enable=true
netletdaemon.migrator.mobilecode=MF01@mct.admin.RemoteMigrationFacilitator
netletdaemon.migration.rmi.host.0=inm-057178.sce.carleton.ca
netletdaemon.migration.rmi.name.0=MF02@mct.admin.RemoteMigrationFacilitator
netletdaemon.security.enable=false

MIB Extend Facilitator Configuration

netletdaemon.mibextend.enable=true
netletdaemon.mibextend.vmc=MEF01@mct.users.MIBExtendFacilitator

Mobile Code MIB Extender Configuration

netletdaemon.install.mobilecode.0=MCMIB01@mct.mcmgmt.MCMIBExtender
netletdaemon.install.mobilecode.properties.0=/home/patricia/mctoolkit/mct/configuration
/lmcmib.properties
netletdaemon.install.mobilecode.1=LMGR01@mct.management.LocalManager

138

MCMIB01 owns a one-line properties file, lmcmib.properties, which states the

scope of the mobile agent management:

Starting up ND03 netlet on inm-057179

1. Running the rmiregistry . Click on the ntreg.bat file from the NT Explorer.

2. Running the ND03 netlet daemon. Click on the ntnd03.bat batch file

from the NT Explorer.

mcmibextender.management=local

ECHO OFF
REM Create a MCToolkit Environment on NT
REM Phase 1: Run nt rmiregistry
ECHO ON

set jdk=C:\JBuilder3\java
set PATH=%jdk%\bin;

REM PC20000513 - Run the NT rmiregistry process
set CLASSPATH=
%jdk%\bin\rmiregistry

139

Querying the MIB

The snmptest manager application and the objects and object instance identifiers

illustrated in Table D.1 and Table D.2 are used to interrogate the XMS-SNMP

agent's MIB.

According to its position in the OSI tree-structured MIB, the MCMIBTREE group

identifier is 1.3.6.1.3.100.3, therefore all the object identifiers in this group are of

the form

ECHO OFF
REM Create a MCToolkit Environment on NT
REM Phase 2: Run the NT RMINetletDaemon
ECHO ON

set jdk=C:\JBuilder3\java
set PATH=%jdk%\bin;
set mctoolkit=E:\mctoolkit

REM PC20000513 - Run Mobile Code Daemon : nd03
java mct.RMINetletDaemon
%mctoolkit%\mct\configuration\ntnd02.properties

140

Object Object IDentifier (OID)

MCMIB x.1

mcNumber x.1.1

mcTable x.1.2

mcEntry x.1.2.1

mcIndex x.1.2.1.1

mcId x.1.2.1.2

mcClassName x.1.2.1.3

mcAlias x.1.2.1.4

mcType x.1.2.1.5

mcInfo x.1.2.1.6

mcLocation x.1.2.1.7

mcStatus x.1.2.1.8

mcMessagingAccess x.1.2.1.9

mcMigratable x.1.2.1.10

mcVisitedNodes x.1.2.1.11

mcMgmtOp x.1.2.1.12

MHMIB x.2

mcMigrationHistoryTable x.2.1

mcMigrationHistoryEntry x.2.1.1

mcIndex x.2.1.1.1

mhIndex x.2.1.1.2

mhNode x.2.1.1.3

Table D.1 Object Identifiers for MCMIBTREE Group

where x = 1.3.6.1.3.100.3, the MCMIBTREE group identifier.

And the instance identifiers for MCMIBTREE table entries are

141

Table Row identifier OID

mcTable 1.3.6.1.3.100.3.1.2.1 y.i.(mcIndex)

mcMigrationHistoryTable 1.3.6.1.3.100.3.2.1.1 y.j.(mcIndex).(mhIndex)

Table D.2 Instance Identifiers for the MCMIBTREE Table Entries

where

y = row identifier;

i = columnar object identifier in the range 1..12;

j = columnar identifier in the range 1..3 and

the format (mcIndex) and (mhIndex) indicates the values of these objects

respectively.

The first GetRequest is issued to retrieve the current number of mobile agents

residing in ND01,

GetRequest (mcNumber.0)

then, a response is returned and displayed with value =6

GetResponse(mcNumber.0=6)

The second request wishes to retrieve the mobile code descriptive identifiers of

these six mobile agents visiting ND01,

142

GetRequest (mcId.1, mcId.2, mcId.3, mcId.4, mcId.5, mcId.6)

and the response received is

GetResponse (

mcId.1="MEF01[PUBLIC]@mct.users.MIBExtendFacilitator",

mcId.2="MCMIB01[PUBLIC]@mct.mcmgmt.MCMIBExtender",

mcId.3="MF01[PUBLIC]@mct.admin.RemoteMigrationFacilitator",

mcId.4="RML01[PUBLIC]@mct.mediator.RemoteMediatorListener",

mcId.5="MyHello01[PUBLIC]@mct.examples.Hello.Hello",

mcId.6="LMGR01[PUBLIC]@mct.management.LocalManager")

The final request retrieves a complete row in the mcTable

GetRequest (mcIndex.5, mcId.5, mcClassName.5, mcAlias.5, mcType.5,

mcInfo.5, mcLocation.5, mcStatus.5, mcMessagingAccess.5,

mcMigratable.5, mcVisistedNodes.5,mcMgmtOp.5)

and the response received is

GetResponse (mcIndex.5=5,

mcId ="MyHello01[PUBLIC]@mct.examples.Hello.Hello",

mcClassName= "mct.examples.Hello.Hello",

143

mcAlias= "mct.examples.Hello.Hello"

mcType= "NETLET",

mcInfo= "No information available",

mcLocation= "134.117.4.14:-1:-1:6668",

mcStatus= "RUNNING",

mcMessagingAccess= "No "

mcMigratable "Yes"

mcVisitedNodes= 1

mcMgmtOp= -1)

The Figure D.1 displays the manager application interaction with the XMS-SNMP

agent.

144

Figure D.1 snmptest Application Interaction with the XMS-SNMP agent

Variable: 1.3.6.1.3.100.3.1.1.0
Variable:
Received Get Response from 134.117.4.14
requestid 0x39477187 errstat 0x0 errindex 0x0
100.3.1.0.1.0 6
Variable: 1.3.6.1.3.100.3.1.2.1.2.1
Variable: 1.3.6.1.3.100.3.1.2.1.2.2
Variable: 1.3.6.1.3.100.3.1.2.1.2.3
Variable: 1.3.6.1.3.100.3.1.2.1.2.4
Variable: 1.3.6.1.3.100.3.1.2.1.2.5
Variable: 1.3.6.1.3.100.3.1.2.1.2.6
Variable:
Received Get Response from 134.117.4.14
requestid 0x39477188 errstat 0x0 errindex 0x0
100.3.1.2.1.2.1 "MEF01[PUBLIC]@mct.users.MIBExtendFacilitator"
100.3.1.2.1.2.2 "MCMIB01[PUBLIC]@mct.mcmgmt.MCMIBExtender"
100.3.1.2.1.2.3 "MF01[PUBLIC]@mct.admin.RemoteMigrationFacilitator"
100.3.1.2.1.2.4 "RML01[PUBLIC]@mct.mediator.RemoteMediatorListener"
100.3.1.2.1.2.5 "MyHello01[PUBLIC]@mct.examples.Hello.Hello"
100.3.1.2.1.2.6 "LMGR01[PUBLIC]@mct.management.LocalManager"
Variable: 1.3.6.1.3.100.3.1.2.1.1.5
Variable: 1.3.6.1.3.100.3.1.2.1.2.5
Variable: 1.3.6.1.3.100.3.1.2.1.3.5
Variable: 1.3.6.1.3.100.3.1.2.1.4.5
Variable: 1.3.6.1.3.100.3.1.2.1.5.5
Variable: 1.3.6.1.3.100.3.1.2.1.6.5
Variable: 1.3.6.1.3.100.3.1.2.1.7.5
Variable: 1.3.6.1.3.100.3.1.2.1.8.5
Variable: 1.3.6.1.3.100.3.1.2.1.9.5
Variable: 1.3.6.1.3.100.3.1.2.1.10.5
Variable: 1.3.6.1.3.100.3.1.2.1.11.5
Variable: 1.3.6.1.3.100.3.1.2.1.12.5
Variable:
Received Get Response from 134.117.4.14
requestid 0x39477189 errstat 0x0 errindex 0x0
100.3.1.2.1.1.5 5
100.3.1.2.1.2.5 "MyHello01[PUBLIC]@mct.examples.Hello.Hello"
100.3.1.2.1.3.5 "mct.examples.Hello.Hello"
100.3.1.2.1.4.5 "mct.examples.Hello.Hello"
100.3.1.2.1.5.5 "NETLET"
100.3.1.2.1.6.5 "No information available"
100.3.1.2.1.7.5 "134.117.4.14:-1:-1:6668"
100.3.1.2.1.8.5 "RUNNING"
100.3.1.2.1.9.5 "No "
100.3.1.2.1.10.5 "Yes"
100.3.1.2.1.11.5 1
100.3.1.2.1.12.5 -1
Variable: $Q
Quitting, Goodbye

145

Appendix E

Regional Mobile Agent MIB Test

In a regional mode management scenario, the network manager application queries

the XMS-SNMP agent and will be able to manage all mobile agents running in the

region. In this case, the ND01 is configured with a MIBExtendFacilitator and a

MCMIBExtender, which extends the XMS-SNMP agent's MIB, interfacing the

mobile agents visiting the three MCDs currently registered with the Mediator at

sunspot, inm-057178 and inm-057179 respectively. It also requires the three netlet

daemons configure the RemoteManager component to accept management

operations coming from the remote network manager station.

For ND01, the following lines are included in the netlet daemon's properties file,

MIB Extend Facilitator Configuration

netletdaemon.mibextend.enable=true

netletdaemon.mibextend.vmc=MEF01@mct.users.MIBExtendFacilitator

###

Mobile Code MIB Extender Configuration

146

where mcmib.properties is a one-line test file containing

For ND02,

and for ND03

Following the same configuration sequence than the local management scenario

above, the Mediator and ND02 netlet daemon will be started up in inm-057178

netletdaemon.install.mobilecode.0=MIB01@mct.mcmgmt.MCMIBExtender

netletdaemon.install.mobilecode.properties.0=/home/patricia/mctoolkit/mct/co

nfiguration/mcmib.properties

netletdaemon.install.mobilecode.1=RM01@mct.management.RemoteManager

mcmibextender.management=regional

netletdaemon.install.mobilecode.1=RM02@mct.management.RemoteManager

netletdaemon.install.mobilecode.1=RM03@mct.management.RemoteManager

147

first, followed by the XMS-SNMP agent and the ND01 netlet daemon in sunspot

and ND03 netlet daemon in inm-057179 will start third.

The snmptest manager application is used to interrogate the XMS-SNMP agent’s

MIB.

The first request retrieves the number of mobile agents currently registered in the

region:

GetRequest (mcNumber.0)

then, a response is returned and displayed with value =10

GetResponse(mcNumber.0=10)

The second request wishes to retrieve the mobile code descriptive identifiers of

these 10 mobile agents,

GetRequest (mcId.1, mcId.2, mcId.3, mcId.4, mcId.5, mcId.6,

mcId.7, mcId.8, mcId.9, mcId.10)

and the response received is

148

GetResponse (

mcId.1=

"MyTicTacToe01[PUBLIC]@mct.examples.McTicTacToe.McTicTacToe",

mcId.2= "RMGR02[PUBLIC]@mct.management.RemoteManager",

mcId.3= "RMGR01[PUBLIC]@mct.management.RemoteManager",

mcId.4= "RMGR03[PUBLIC]@mct.management.RemoteManager",

mcId.5= "MF03[PUBLIC]@mct.admin.RemoteMigrationFacilitator"

mcId.6= "MF02[PUBLIC]@mct.admin.RemoteMigrationFacilitator",

mcId.7=

"MyHello02[PUBLIC]@mct.examples.Hello.Hello",

mcId.8= "MF01[PUBLIC]@mct.admin.RemoteMigrationFacilitator",

mcId.9=

"MCMIB01[PUBLIC]@mct.mcmgmt.MCMIBExtender",

mcId.10=

"MEF01[PUBLIC]@mct.users.MIBExtendFacilitator")

The third request retrieves a complete row in the mcTable

GetRequest (mcIndex.7, mcId.7, mcClassName.7, mcAlias.7, mcType.7,

mcInfo.7, mcLocation.7, mcStatus.7, mcMessagingAccess.7,

mcMigratable.7, mcVisistedNodes.7,mcMgmtOp.7)

149

and receives:

GetResponse (mcIndex.7=7,

mcId

 ="MyTicTacToe01[PUBLIC]@mct.examples.McTicTacToe.McTicTacToe",

mcClassName= " mct.examples.McTicTacToe.McTicTacToe",

mcAlias= " mct.examples.McTicTacToe.McTicTacToe",

mcType= "NETLET",

mcInfo= "No information available",

mcLocation= "134.117.57.178:-1:-1:7777",

mcStatus= "RUNNING",

mcMessagingAccess= "No "

mcMigratable "Yes"

mcVisitedNodes= 8

mcMgmtOp= -1)

To retrieve the migration history of the mobile agent above, the get request looks

like:

GetRequest (mhNode.7.1.1, mhNode.7.1.2., mhNode.7.1.3, mhNode.7.1.4,

 mhNode.7.1.5, mhNode.7.1.6, mhNode.7.1.7, mhNode.7.1.8)

and it receives,

150

GetResponse(mhNode.7.1.1= "//sunspot.sce.carleton.ca:-1:-:6666/ND01",

 mhNode.7.1.2= "//inm-057178:-1:-1:7777/ND02",

 mhNode.7.1.3= "//inm-057179:-1:-1:7778/ND03" ,

 mhNode.7.1.4= "//sunspot.sce.carleton.ca:-1:-1:6666/ND01",

 mhNode.7.1.5= "//inm-057178:-1:-1:7777/ND02",

 mhNode.7.1.6= "//inm-057179:-1:-1:7778/ND03",

 mhNode.7.1.7= "//sunspot.sce.carleton.ca:-1:-1:6666/ND01" ,

 mhNode.7.1.8= "//inm-057178:-1:-1:7777/ND02")

To send a management operation to stop an mobile agent in the region, the network

manager will

SetRequest (mcMgmtOp.7, i, 3)

and receives

GetResponse(mcMgmtOp.7=3)

Then, the mobile agent's operational status can be retrieved issuing

GetRequest(mcStatus.7)

151

and the response is

GetResponse(mcStatus.7=”STOPPED”)

But this mobile agent is still in ND02 and registered with the Mediator. To

completely destroy it, the network manager can:

SetRequest (mcMgmtOp.7, i, 4)

obtaining

GetResponse(mcMgmtOp.7=4)

and the number of mobile agents now registered with the Mediator

GetRequest(mcNumber.0)

will be updated to

GetResponse(mcNumber.0=9)

The complete snmptest interaction with the XMS-SNMP agent can be shown in

Figure E.1.

152

Variable: 1.3.6.1.3.100.3.1.1.0
Variable:
Received Get Response from 134.117.4.14
requestid 0x1CBAE15B errstat 0x0 errindex 0x0
100.3.1.0.1.0 10
Variable: 1.3.6.1.3.100.3.1.2.1.2.1
Variable: 1.3.6.1.3.100.3.1.2.1.2.2
Variable: 1.3.6.1.3.100.3.1.2.1.2.3
Variable: 1.3.6.1.3.100.3.1.2.1.2.4
Variable: 1.3.6.1.3.100.3.1.2.1.2.5
Variable: 1.3.6.1.3.100.3.1.2.1.2.6
Variable: 1.3.6.1.3.100.3.1.2.1.2.7
Variable: 1.3.6.1.3.100.3.1.2.1.2.8
Variable: 1.3.6.1.3.100.3.1.2.1.2.9
Variable: 1.3.6.1.3.100.3.1.2.1.2.10
Variable:
Received Get Response from 134.117.4.14
requestid 0x1CBAE15C errstat 0x0 errindex 0x0
100.3.1.2.1.2.1 "MyTicTacToe01[PUBLIC]@mct.examples.McTicTacToe.McTicTacToe"
100.3.1.2.1.2.2 "RMGR02[PUBLIC]@mct.management.RemoteManager"
100.3.1.2.1.2.3 "RMGR01[PUBLIC]@mct.management.RemoteManager"
100.3.1.2.1.2.4 "RMGR03[PUBLIC]@mct.management.RemoteManager"
100.3.1.2.1.2.5 "MF03[PUBLIC]@mct.admin.RemoteMigrationFacilitator"
100.3.1.2.1.2.6 "MF02[PUBLIC]@mct.admin.RemoteMigrationFacilitator"
100.3.1.2.1.2.7 "MyHello02[PUBLIC]@mct.examples.Hello.Hello"
100.3.1.2.1.2.8 "MF01[PUBLIC]@mct.admin.RemoteMigrationFacilitator"
100.3.1.2.1.2.9 "MCMIB01[PUBLIC]@mct.mcmgmt.MCMIBExtender"
100.3.1.2.1.2.10 "MEF01[PUBLIC]@mct.users.MIBExtendFacilitator"
Variable: 1.3.6.1.3.100.3.1.2.1.1.1
Variable: 1.3.6.1.3.100.3.1.2.1.2.1
Variable: 1.3.6.1.3.100.3.1.2.1.3.1
Variable: 1.3.6.1.3.100.3.1.2.1.4.1
Variable: 1.3.6.1.3.100.3.1.2.1.5.1
Variable: 1.3.6.1.3.100.3.1.2.1.6.1
Variable: 1.3.6.1.3.100.3.1.2.1.7.1
Variable: 1.3.6.1.3.100.3.1.2.1.8.1
Variable: 1.3.6.1.3.100.3.1.2.1.9.1
Variable: 1.3.6.1.3.100.3.1.2.1.10.1
Variable: 1.3.6.1.3.100.3.1.2.1.11.1
Variable: 1.3.6.1.3.100.3.1.2.1.12.1
Variable:
Received Get Response from 134.117.4.14
100.3.1.2.1.1.1 1
100.3.1.2.1.2.1 "MyTicTacToe01[PUBLIC]@mct.examples.McTicTacToe.McTicTacToe"
100.3.1.2.1.3.1 "mct.examples.McTicTacToe.McTicTacToe"
100.3.1.2.1.4.1 "mct.examples.McTicTacToe.McTicTacToe"
100.3.1.2.1.5.1 "NETLET"
100.3.1.2.1.6.1 "No information available"
100.3.1.2.1.7.1 "134.117.57.178:-1:-1:7777"
100.3.1.2.1.8.1 "RUNNING"
100.3.1.2.1.9.1 "No "
100.3.1.2.1.10.1 "Yes"
100.3.1.2.1.11.1 8
100.3.1.2.1.12.1 -1

153

Variable: 1.3.6.1.3.100.3.2.1.1.3.1.1
Variable: 1.3.6.1.3.100.3.2.1.1.3.1.2
Variable: 1.3.6.1.3.100.3.2.1.1.3.1.3
Variable: 1.3.6.1.3.100.3.2.1.1.3.1.4
Variable: 1.3.6.1.3.100.3.2.1.1.3.1.5
Variable: 1.3.6.1.3.100.3.2.1.1.3.1.6
Variable: 1.3.6.1.3.100.3.2.1.1.3.1.7
Variable: 1.3.6.1.3.100.3.2.1.1.3.1.8
Variable:
Received Get Response from 134.117.4.14
requestid 0x1CBAE15E errstat 0x0 errindex 0x0
100.3.2.1.1.3.1.1 "//sunspot.sce.carleton.ca:-1:-1:6666/ND01"
100.3.2.1.1.3.1.2 "//inm-057178:-1:-1:7777/ND02"
100.3.2.1.1.3.1.3 "//inm-057179:-1:-1:7778/ND03"
100.3.2.1.1.3.1.4 "//sunspot.sce.carleton.ca:-1:-1:6666/ND01"
100.3.2.1.1.3.1.5 "//inm-057178:-1:-1:7777/ND02"
100.3.2.1.1.3.1.6 "//inm-057179:-1:-1:7778/ND03"
100.3.2.1.1.3.1.7 "//sunspot.sce.carleton.ca:-1:-1:6666/ND01"
100.3.2.1.1.3.1.8 "//inm-057178:-1:-1:7777/ND02"
Variable: 1.3.6.1.3.100.3.1.2.1.1.7
Variable: 1.3.6.1.3.100.3.1.2.1.2.7
Variable: 1.3.6.1.3.100.3.1.2.1.3.7
Variable: 1.3.6.1.3.100.3.1.2.1.4.7
Variable: 1.3.6.1.3.100.3.1.2.1.5.7
Variable: 1.3.6.1.3.100.3.1.2.1.6.7
Variable: 1.3.6.1.3.100.3.1.2.1.7.7
Variable: 1.3.6.1.3.100.3.1.2.1.8.7
Variable: 1.3.6.1.3.100.3.1.2.1.9.7
Variable: 1.3.6.1.3.100.3.1.2.1.10.7
Variable: 1.3.6.1.3.100.3.1.2.1.11.7
Variable: 1.3.6.1.3.100.3.1.2.1.12.7
Variable:
Received Get Response from 134.117.4.14
requestid 0x1CBAE15F errstat 0x0 errindex 0x0
100.3.1.2.1.1.7 7
100.3.1.2.1.2.7 "MyHello02[PUBLIC]@mct.examples.Hello.Hello"
100.3.1.2.1.3.7 "mct.examples.Hello.Hello"
100.3.1.2.1.4.7 "mct.examples.Hello.Hello"
100.3.1.2.1.5.7 "NETLET"
100.3.1.2.1.6.7 "No information available"
100.3.1.2.1.7.7 "134.117.57.178:-1:-1:7777"
100.3.1.2.1.8.7 "RUNNING"
100.3.1.2.1.9.7 "No "
100.3.1.2.1.10.7 "Yes"
100.3.1.2.1.11.7 1
100.3.1.2.1.12.7 -1

154

Variable: $S
Request type is Set Request
Variable: 1.3.6.1.3.100.3.1.2.1.12.7
Type [i|s|x|d|n|o|t|a]: i
Value: 3
Variable:
Received Get Response from 134.117.4.14
requestid 0x1CBAE160 errstat 0x0 errindex 0x0
100.3.1.2.1.12.7 3
Variable: $G
Request type is Get Request
Variable: 1.3.6.1.3.100.3.1.2.1.8.7
Variable:
Received Get Response from 134.117.4.14
requestid 0x1CBAE161 errstat 0x0 errindex 0x0
100.3.1.2.1.8.7 "STOPPED"
Variable: $S
Request type is Set Request
Variable: 1.3.6.1.3.100.3.1.2.1.12.7
Type [i|s|x|d|n|o|t|a]: i
Value: 4
Variable:
Received Get Response from 134.117.4.14
requestid 0x1CBAE162 errstat 0x0 errindex 0x0
100.3.1.2.1.12.7 4
Variable: $G
Request type is Get Request
Variable: 1.3.6.1.3.100.3.1.1.0
Variable:
Received Get Response from 134.117.4.14
requestid 0x1CBAE163 errstat 0x0 errindex 0x0
100.3.1.0.1.0 9
Variable: 1.3.6.1.3.100.3.1.2.1.2.1
Variable: 1.3.6.1.3.100.3.1.2.1.2.1
Variable: 1.3.6.1.3.100.3.1.2.1.2.2
Variable: 1.3.6.1.3.100.3.1.2.1.2.3
Variable: 1.3.6.1.3.100.3.1.2.1.2.4
Variable: 1.3.6.1.3.100.3.1.2.1.2.5
Variable: 1.3.6.1.3.100.3.1.2.1.2.6
Variable: 1.3.6.1.3.100.3.1.2.1.2.7
Variable: 1.3.6.1.3.100.3.1.2.1.2.8
Variable: 1.3.6.1.3.100.3.1.2.1.2.9
Variable:

155

Figure E.1 snmptest Application Interrogating the XMS-SNMP agent's MIB

Received Get Response from 134.117.4.14
requestid 0x1CBAE164 errstat 0x0 errindex 0x0
100.3.1.2.1.2.1 "MF03[PUBLIC]@mct.admin.RemoteMigrationFacilitator"
100.3.1.2.1.2.2 "MyTicTacToe01[PUBLIC]@mct.examples.McTicTacToe.McTicTacToe"
100.3.1.2.1.2.3 "MF01[PUBLIC]@mct.admin.RemoteMigrationFacilitator"
100.3.1.2.1.2.4 "MF02[PUBLIC]@mct.admin.RemoteMigrationFacilitator"
100.3.1.2.1.2.5 "RMGR02[PUBLIC]@mct.management.RemoteManager"
100.3.1.2.1.2.6 "MEF01[PUBLIC]@mct.users.MIBExtendFacilitator"
100.3.1.2.1.2.7 "MCMIB01[PUBLIC]@mct.mcmgmt.MCMIBExtender"
100.3.1.2.1.2.8 "RMGR01[PUBLIC]@mct.management.RemoteManager"
100.3.1.2.1.2.9 "RMGR03[PUBLIC]@mct.management.RemoteManager"
Variable: $Q
Quitting, Goodbye

